Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=1+2+22+...+2100
=>2A=2+22+23+...2101
=>2A-A=(2+22+23+...+2101)-(1+2+22+...+2100)
=>A=2101-1
b)B=3+32+33+...+3100
=>3B=32+33+...+3101
=>3B-B=(32+33+...+3101)-(3+32+...3100)
=>2B-B=3101-3
=>B=(3101-3):2
c)C=1+2+4+8+16+...+8192
=>C=1+2+22+23+...213
=>2C=2+22+23+...+214
=>2C-C=(2+22+...+214)-(2+22+...+213)
=>C=214-2
d)D=4+42+43+...+4n
=>4D=42+43+...+4n+1
=>4D-D=(42+43+...+4n+1)-(4+42+...+4n)
=>3D=4n+1-4
=>D=(4n+1-4):3
\(S=1+2+2^2+.......+2^{89}\)
\(\Leftrightarrow2S=2+2^2+........+2^{90}\)
\(\Leftrightarrow2S-S=\left(2+2^2+........+2^{89}+2^{90}\right)-\left(1+2+........+2^{89}\right)\)
\(\Leftrightarrow S=2^{90}-1\)
S = 1 + 2 + 22 + 23 + ......... + 289
S = 20 + 21 + 22 + 23 + ....... + 289
21 . S = 21 . ( 20 + 21 + 22 + 23 + ...... + 289 )
2S = 21 + 22 + 23 + 24 + .......... 290
2S - S = ( 21 + 22 + 23 + 24 + ....... + 290 ) - ( 1 + 2 + 22 + 23 + ..... + 289 )
S = 290 - 1
Vậy S = 290 - 1
Đặt A= 30 + 31 + 32 + .......+ 32015
3A = (30 + 31 + 32 + .......+ 32015) .3
3A = 31 + 32 + 33 + ..........+ 32016
Lấy 3A - A
3A = 31 + 32 + 33 + ..........+ 32016
A = 30 + 31 + 32 + ...........+ 32015
2A = 30 - 32016
A =( 30 - 32016) : 2
Gọi 30+31+32+..........+32015 là A
Ta có: A = 30+31+32+..........+32015
=> 3A = 31+32+..........+32016
=> 3A - A = ( 31+32+..........+32016 ) - ( 30+31+32+..........+32015 )
=> 2A = 32016 - 30
=> \(A=\frac{3^{2016}-3^0}{2}\)
\(A=2^0+2^1+2^2+.....+2^{1990}\)
\(2A=2\left(2^0+2^1+2^2+.....+2^{1990}\right)\)
\(2A=2^1+2^2+2^3+.....+2^{1991}\)
\(2A-A=\left(2^1+2^2+2^3+.....+2^{1991}\right)-\left(2^0+2^1+2^2+.....+2^{1990}\right)\)
\(A=2^{1991}-2^0=2^{1991}-1\)
\(B=a^0+a^1+a^2+a^3+.....+a^n\)
\(B.a=a^1+a^2+a^3+a^4+.....+a^{n+1}\)
\(B.a-B=\left(a^1+a^2+a^3+a^4+......+a^{n+1}\right)-\left(a^0+a^1+a^2+a^3+.....+a^n\right)\)
\(B.a=a^{n+1}-1\Leftrightarrow B=\dfrac{a^{n+1}-1}{a}\)
\(C=1+3+3^2+.....+3^{50}\)
\(3C=3\left(1+3+3^2+.....+3^{50}\right)\)
\(3C=3+3^2+3^3+.....+3^{51}\)
\(3C-C=\left(3+3^2+3^3+.....+3^{51}\right)-\left(1+3+3^2+.....+3^{50}\right)\)
\(2C=3^{51}-1\Rightarrow C=\dfrac{3^{51}-1}{2}\)
A = 2^0 + 2^1 + 2^2 + 2^3 + ...+ 2^50
=> 2A = 2^1 + 2^2 + 2^3 + 2^4 + ...+ 2^51
=> 2A-A = 2^51 - 2^0
A = 2^51 - 1