Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; A =1 + 2 +3+ 4+ 5+ ... +n
Xét dãy số 1; 2; 3; 4;5;...;n
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (n - 1) : 1 + 1 = n (số số hạng)
Tổng của dãy số trên là: (n + 1).n x 2
A = (n + 1).n:2
B = 1 + 3 + 5+ 7+ ...+ (2n - 1)
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n
Tổng của dãy số trên là: (2n - 1 + 1) x n : 2 = n2
Vậy B = n2
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+(n-1)n[(n+1)-(n-2)]
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+(n-1)n(n+1)-(n-2)(n-1)n
3A=(n-1)n(n+1)
A=(n-1)n(n+1)/3
Ta có :
\(A=1.2+2.3+3.4+...+\left(n-1\right).n\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+\left(n-1\right).n.3\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+\left(n-1\right).n.\left[\left(n+1\right)-\left(n-2\right)\right]\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+\left(n-1\right)n.\left(n+1\right)-\left(n-2\right).\left(n-1\right).n\)
\(\Rightarrow3A=\left(n-1\right).n.\left(n+1\right)\)
\(\Rightarrow A=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)
Vậy \(A=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)
P/s : Mik ko chắc
~ Ủng hộ nhé
Viết lại S như sau: S= 1^3+2^3+3^3+4^3+......+ (n-1)^3+n^3
ta cần nhớ lại hằng đẳng thức bậc 3 sau: a^3+b^3=(a+b)^3 -3ab(a+b),rồi ghép các cặp số liền kề với nhau là được VD như 1 và 2, 3 và 4, n-1 và n
Khi đó S sẽ trở thành: S=(1+2)^3-3x1x2(1+2) + (3+4)^3 -3x3x4(3+4) +....+ (n-1+n)^3 -3xnx(n-1)(n-1-n)
<=> S=(1+2)^3-3x1x2(1+2) + (3+4)^3 -3x3x4(3+4) +....+(2n-1)^3-3n(n-1)(2n-1)
Vậy...................
=(a+b)[a^(n-1)-a^(n-2)*b+a^(n-3)*b^2-...+a^2*b(n-3)-a*b(n-2)+b(n-1)]
Câu hỏi của Nguyễn Thị Ngọc Lan - Toán lớp 7 - Học toán với OnlineMath
Ta có :
Tổng trên có số số hạng là:
(n-1):1+1=n(số hạng)
=>tổng trên là:
((n^3-1^3).n):2
=(n^4-n):2