
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Đặt A = 21+22+23+....+2n
=> 2A = 22+23+24+....+2n+1
=> 2A - A = 2n+1 - 2
=> A = 2n+1 - 2 = 2.(2n - 1)

\(S=2014+\frac{2014}{1+2}+\frac{2014}{1+2+3}+...+\frac{2014}{1+2+3+...+10000}\)
\(S=\frac{2014}{\frac{1.2}{2}}+\frac{2014}{\frac{2.3}{2}}+\frac{2014}{\frac{3.4}{2}}+...+\frac{2014}{\frac{10000.10001}{2}}\)
\(S=\frac{4028}{1.2}+\frac{4028}{2.3}+\frac{4028}{3.4}+...+\frac{4028}{10000.10001}\)
\(S=4028\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10000.10001}\right)\)
\(S=4028\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10001-10000}{10000.10001}\right)\)
\(S=4028\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10000}-\frac{1}{10001}\right)\)
\(S=4028\left(1-\frac{1}{10001}\right)=\frac{40280000}{10001}\)

Bước 1: Xét mẫu số của số hạng tổng quát trong tổng trên:
S = 1 + 2 + ... + (n - 1) + n ( * )
Khi viết S theo thứ tự ngược lại la có:
S = n + (n - 1) + ... + 2 + 1 ( ** )
Cộng vế với vế của ( * ) và ( ** ) ta có:
S + S = [1 + n] + [2 + (n - 1)] + ... + [(n - 1) + 2] + [n + 1]
2 . S = [n + 1] + [n + 1] + . . . + [n + 1] + [n + 1] (Tổng có n số hạng [n + 1] )
2 . S = n.(n + 1)
=> S = n.(n + 1)/2
=> Số hạng tổng quát của tổng đã cho là:
Bước 2: Ta có nhận xét:
=> ( *** )
Bước 3: Thay n = 1, 2, ... vào ( *** ) ta được các đẳng thức tương ứng:
. . .
Cộng các vế với nhau ta được:
Vậy tổng đã cho có kết quả bằng 2.

\(a_{n-1}=\frac{2}{n\left(n+1\right)}=\frac{2}{n}+\frac{2}{n+1}\)
\(A=\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+.......+\frac{2}{2014}-\frac{2}{2015}=1-\frac{2}{2015}=\frac{2013}{2015}\)

Áp dụng công thức \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\) ta được:
\(\frac{x+2}{x+6}=\frac{3}{x+1}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)=3\left(x+6\right)\)
\(\Leftrightarrow x^2+3x+2=3x+18\)
\(\Leftrightarrow x^2=16\)
Vậy \(x\in\left\{4;-4\right\}\)
(x+2)/(x+6)=3/(x+1)
<=> (x+2)(x+1)/(x+6)(x+1)=3(x+6)/(x+6)(x+1)
=>(x+2)(x+1)=3(x+6)
<=> x^2+x+2x+2=3x+18
<=> x^2=16
<=>x^2=4^2 hoặc (-4)^2
<=> x=4 hoặc x=-4
Vậy.........
A=12+22+32+......+20142
2A=22+32+42+.....+20142+20152
A=20152-12
A=4060224