Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=0.2+2.4+4.6+...+2n\left(2n+2\right)\)
\(6S=2.4.6+4.6.\left(8-2\right)+...+2n\left(2n+2\right)\left[\left(2n+4\right)-\left(2n-2\right)\right]\)
\(=2.4.6+4.6.8-2.4.6+...+2n\left(2n+2\right)\left(2n+4\right)-\left(2n-2\right).2n.\left(2n+2\right)\)
\(=2n\left(2n+2\right)\left(2n+4\right)\)
Suy ra \(S=\frac{2n\left(2n+2\right)\left(2n+4\right)}{6}\)
Gọi biểu thức trên là A ta có
2A=2/2.4+2/4.6+.....+2/2n(2n+2)
(=) 1/2 - 1/4 + 1/4 - 1/6 + ..... + 1/2n - 1/2n+2 = 1004/2009
(=) 1/2 - 1/2n+2 = 1004/2009
(=) 1/2n+2 = 1/2-1004/2009
(=) 1/2n+2 = 1/4018
=)) 2n+2 = 4018
=)) 2n = 4016
=)) n = 2008
S = 1.3 + 2.4 + 3.5 + 4.6 + ..... + 99.101 + 100.102
= 1.(2 + 1) + 2(3 + 1) + 3.(4 + 1) + ......... + 99(100 + 1) + 100.(101 + 1)
= 1.2 + 1 + 2.3 + 1 + 3.4 + 3 + ........ + 99.100 + 99 + 100.101 + 100
= (1.2 + 2.3 + 3.4 + ....... + 100.101 ) + (1 + 2 + 3 + ....... + 100)
Ta có công thức :
\(1.2+2.3+3.4+....+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
Áp dụng vào bài toán ta được :
\(S=\frac{100.101.102}{3}+\frac{100.101}{2}\)
= 343400 + 5050
= 348450