K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

Ta có : 

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(A=\frac{33}{50}\)

Vậy \(A=\frac{33}{50}\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

29 tháng 6 2017

Đặt : \(A=\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+...+\frac{5}{27\cdot30}\)

\(A=\frac{1}{3}\left(\frac{5}{1}-\frac{5}{4}+\frac{5}{4}-\frac{5}{7}+...+\frac{5}{27}-\frac{5}{30}\right)\)

\(A=\frac{1}{3}\left(5-\frac{5}{30}\right)\)

\(A=\frac{1}{3}\cdot\frac{29}{6}\)

\(A=\frac{29}{18}\)

29 tháng 6 2017

\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+....+\frac{5}{27.30}\)

\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{30-27}{27.30}\)

\(=\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{27}-\frac{1}{30}\right)\)

\(=\frac{5}{3}\cdot\left(1-\frac{1}{30}\right)\)

\(=\frac{5}{3}\cdot\frac{29}{30}=\frac{29}{18}\)

2 tháng 8 2018

các bn trả lời nhanh nhé

đến 9:10 nhé

2 tháng 8 2018

\(A=\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+.....+\frac{2}{73.76}\)

\(=\frac{2}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+....+\frac{3}{73.76}\right)\)

\(=\frac{2}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{73}-\frac{1}{76}\right)\)

\(=\frac{2}{3}\left(\frac{1}{4}-\frac{1}{76}\right)\)

\(=\frac{2}{3}.\frac{9}{38}=\frac{3}{19}\)

29 tháng 6 2017

a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.....+\frac{5}{27.30}\)

\(=\frac{5}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+........+\frac{1}{27.30}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{27}-\frac{1}{30}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{30}\right)\)

\(=\frac{5}{3}.\frac{29}{30}=\frac{29}{36}\)

1 tháng 7 2017

Đặt \(A=\frac{12}{3\cdot5}+\frac{12}{5\cdot7}+\frac{12}{7\cdot9}+....+\frac{12}{97\cdot99}\)

\(2A=\frac{12}{3}-\frac{12}{5}+\frac{12}{5}-\frac{12}{7}+...+\frac{12}{97}-\frac{12}{99}\)

\(2A=\frac{12}{3}-\frac{12}{99}\)

\(A=\frac{128}{33}\cdot\frac{1}{2}=\frac{64}{33}\)

C = 3/4.7 + 3/7.10 + 3/10.13 + ... + 3/73.76

=1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + ... + 1/73 - 1/76

=1/4 - 1/76

=18/76

16 tháng 7 2016

\(C=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+......+\frac{1}{73}-\frac{1}{76}\)

\(=\frac{1}{4}-\frac{1}{76}\)

\(=\frac{19}{76}-\frac{1}{76}\)

\(=\frac{18}{76}=\frac{9}{38}\)

3 tháng 6 2018

\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+.....+\frac{3}{1+2+...+100}\)

     \(=3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\)

        \(=\frac{2}{2}.\left(3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\right)\)

          \(=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)

          \(=6.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

            \(=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

             \(=6.\left(1-\frac{1}{101}\right)\)

               \(=6.\frac{100}{101}=\frac{600}{101}\)

Vậy \(A=\frac{600}{101}\)

3 tháng 6 2018

\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)

\(A=\frac{3.2}{2}+\frac{3.2}{\left(1+2\right).2}+\frac{3.2}{\left(1+2+3\right).2}+...+\frac{3.2}{\left(1+2+...+100\right).2}\)

\(A=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)

\(A=\frac{6}{1.2}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)

\(A=6\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(A=6\cdot\left(1-\frac{1}{101}\right)=6\cdot\frac{100}{101}=\frac{600}{101}\)

Vay A = ........ 

14 tháng 5 2017

\(A=5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+...+100}\)
 

14 tháng 5 2017

A = \(5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+..+100}\)

\(=5x\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)

\(=5x\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\right)\)

\(=2x5x\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)

\(=10x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{100x101}\right)\)

\(=10x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=10x\left(1-\frac{1}{101}\right)\)

\(=10x\frac{100}{101}\)

\(=\frac{1000}{101}\)

16 tháng 7 2016

\(\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{37.39}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{37}-\frac{1}{39}\)

\(=\frac{1}{3}-\frac{1}{39}\)

\(=\frac{13}{39}-\frac{1}{39}\)

\(=\frac{12}{39}=\frac{4}{13}\)

16 tháng 7 2016

ta có A=1/3-1/5+1/5-1/7+1/7-1/9+....+1/37-1/39

          =1/3-1/39

          =12/39

2 tháng 2 2016

1/

A= 1/15+1/35+1/63+1/99+ ... + 1/9999

A=1/3.5+1/5.7+1/7.9+ ... +1/99.101

2A=2/3.5+2/5.7+2/7.9+ ... +2/99.101

2A=1/3-1/5+1/5-1/7+1/7-1/9+ ... + 1/99-1/101

2A=1/3-1/101

A=49/303

Sai thì thôi nhé

2 tháng 2 2016

A= 1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7

A=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7

A=1-1/7

A=6/7