Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 3 + 32 + 33 + 34 + ... + 32022
3A = 3 + 32 + 33 + ... + 34 + ... + 32022 + 32023
3A - A = (3 + 32 + 33 + ... + 34 + 32022 + 32023) - (1 + 3+...+ 32022)
2A = 3 + 32 + 33 + 34 + ... + 32022 + 32023 - 1 - 3 - ... - 32022
2A = (3 - 3) + (32 - 32) + (34 - 34) + (32022 - 32022) + (32023 - 1)
2A = 32023 - 1
A = \(\dfrac{3^{2023}-1}{2}\)
A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\)
B - A = \(\dfrac{3^{2023}}{2}\) - (\(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\))
B - A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{3^{2023}}{2}\) + \(\dfrac{1}{2}\)
B - A = \(\dfrac{1}{2}\)
A =1+3+32+.....+32022+32023
3.A =3+32+33+.....+32023+32024
3.A -A=(3+32+33+.....+32023+32024 ) - (1+3+32+.....+32022+32023)
2A =32024-1
A =\(\dfrac{3^{2024}-1}{2}\)
9F=3^2+3^4+...+3^2024
=>8F=3^2024-1
=>\(F=\dfrac{3^{2024}-1}{8}\)
\(A=1+3+3^2+3^3+...+3^{2022}\)
\(=1+\left(3+3^2+3^3\right)+...+\left(3^{2020}+3^{2021}+3^{2022}\right)\)
\(=1+3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2020}\left(1+3+3^2\right)\)
\(=1+13\left(3+3^4+...+3^{2020}\right)\)
=>A chia 13 dư 1
Bạn ơi, bạn cũng xem lại giúp mình luôn nha
2020 đâu có chia hết cho 3
Với lại dãy này có 2023 số đó bạn, 2023 cũng đâu chia hết cho 3 đâu
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
Lời giải:
$A=1+3+3^2+3^3+...+3^{2021}$
$3A=3+3^2+3^3+...+3^{2022}$
$\Rightarrow 3A-A=(3+3^2+3^3+...+3^{2022}) - (1+3+3^2+3^3+...+3^{2021})$
$\Rightarrow 2A=3^{2022}-1$
$\Rightarrow A=\frac{3^{2022}-1}{2}$
$B-A=\frac{3^{2022}}{2}-\frac{3^{2022}-1}{2}=\frac{1}{2}$
\(S=3^{2024}-3^{2023}+3^{2022}-3^{2021}+...+3^2-3\)
\(3S=3^{2025}-3^{2024}+3^{2023}-3^{2022}+...+3^3-3^2\)
\(3S+S=3^{2025}-3^{2024}+3^{2023}-3^{2022}+...+3^3-3^2+3^{2024}-3^{2023}+3^{2022}-3^{2021}+...+3^2-3\)\(4S=3^{2025}-3\)
\(S=\dfrac{3^{2025}-3}{4}\)
S = 32024 - 32023 + 32022 - 32021 +... + 32 - 3
3.S = 32025 - 32024 + 32022 -32021 + ....+ 33 - 32
3S + S = 32025 - 32024 + 32022 - 32021 +...+33 - 32+(32024-32023+...-3)
4S = 32025 - 32024 + 32022 - 32021+...+33-32 + 32024-32023+...-3
4S = 32025 - (32024 - 32024) -...-(32 - 32) - 3
4S = 32025 - 3
S = \(\dfrac{3^{2025}-3}{4}\)
a, A = 1 + 3 + 32 + 33 +....+32022
3A = 3 + 32 + 33 +.....+32022 + 32023
3A - A = 32023 - 1
2A = 32023 - 1
2A - 22023 = 32023 - 1 - 22023
2A - 22023 = -1
b, x \(\in\) Z và x + 10 \(⋮\) x - 1 ( đk x# 1)
x + 10 \(⋮\) x - 1
\(\Leftrightarrow\) x - 1 + 11 \(⋮\) x - 1
11 \(⋮\) x - 1
x-1 \(\in\) { -11; -1; 1; 11}
x \(\in\) { -10; 0; 2; 12}
Kết luận các số nguyên x thỏa mãn yêu cầu đề bài là :
x \(\in\) { -10; 0; 2; 12}