Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}+\frac{3}{418}+\frac{3}{550}\)
= \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+\frac{3}{19.22}+\frac{3}{22.25}\)
= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+\frac{1}{19}-\frac{1}{22}+\frac{1}{22}-\frac{1}{25}\)
= \(\frac{1}{1}-\frac{1}{25}\)
= \(\frac{24}{25}\)
b) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n+1\right).\left(2n+3\right)}\)
= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\)
= \(\frac{1}{1}-\frac{1}{2n+3}\)
= \(\frac{2n+2}{2n+3}\)
c) \(\frac{7+\frac{7}{13}-\frac{7}{48}+\frac{7}{95}}{15+\frac{15}{13}-\frac{15}{48}+\frac{15}{95}}-\frac{7070707}{15151515}\)
= \(\frac{7\left(1+\frac{1}{13}-\frac{1}{48}+\frac{1}{95}\right)}{15\left(1+\frac{1}{13}-\frac{1}{48}+\frac{1}{95}\right)}-\frac{7.1010101}{15.1010101}\)
= \(\frac{7}{15}-\frac{7}{15}\)
= 0
Cách tui lẹ hơn cách bạn Nguyễn Duy Khánh nè!
Ta có: \(C=\frac{7^{28}+7^{24}+....+7^4+7^0}{\left(7^{30}+7^{26}+...+7^6+7^2\right)+\left(7^{28}+7^{24}+...+7^4+7^0\right)}\)
\(=\frac{7^{28}+7^{24}+...+7^4+7^0}{7^2\left(7^{28}+7^{24}+...+7^4+7^0\right)+\left(7^{28}+7^{24}+...+7^4+7^0\right)}\)
\(=\frac{7^{28}+7^{24}+...+7^4+7^0}{\left(7^{28}+7^{24}+...+7^4+7^0\right)\left(7^2+1\right)}=\frac{1}{7^2+1}=\frac{1}{50}\)
P/s: Easy đúng không?
\(C=\frac{7^{28}+7^{2\text{4}}+...+7^{\text{4}}+7^0}{7^{30}+7^{28}+...+7^2+7^0}\)
Đặt A là tử số ,B là mẫu số.Ta có:
\(7^{\text{4}}A=7^{32}+7^{28}+...+7^8+7^{\text{4}}+7^0\)
\(20\text{4}1A-A=\left(7^{32}+7^{28}+7^{2\text{4}}+...+7^8+7^{\text{4}}\right)-\left(7^{28}+7^{2\text{4}}+...+7^{\text{4}}+7^0\right)\)
\(2\text{4}00A=7^{32}-7^0=7^{32}-1\)
\(\Rightarrow A=\left(7^{32}-1\right):2\text{4}00\)
\(7^2B=\left(7^{32}+7^{30}+7^{28}+...+7^{\text{4}}+7^2\right)\)
49B-B= ....tự..điền......như A nhé.....
48B=732-1 =>B=[7232-1]:48
=>\(C=\frac{A}{B}=\frac{\left(7^{32}-1\right):2\text{4}00}{\left(7^{32}-1\right):\text{4}8}\)
Tui nghĩ vậy đc r á
p/s:ko chắc
.
\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{997.999}\)
\(\Leftrightarrow C=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{997.999}\right)\)
\(\Leftrightarrow C=\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{997}-\frac{1}{999}\right)\)
\(\Leftrightarrow C=\frac{5}{2}\left(1-\frac{1}{999}\right)=\frac{5}{2}.\frac{998}{999}=\frac{2495}{999}=2\frac{497}{999}\)
\(A=\frac{2}{4}+\frac{2}{28}+\frac{2}{70}+\frac{2}{130}+\frac{2}{208}\)
\(\Leftrightarrow A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}\)
\(\Leftrightarrow A=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\right)\)
\(\Leftrightarrow A=\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(\Leftrightarrow A=\frac{2}{3}\left(1-\frac{1}{16}\right)=\frac{2}{3}.\frac{15}{16}=\frac{5}{8}\)
C = 5/1x3 + 5/3x5 + 5/5x7 + ... + 5/997x999
C = 5 - 5/3 + 5/3 - 5/5 + 5/5 - 5/7 + ... + 5/997 - 5/999
C = 5 - 5/999
C = bạn tự tính nhé !
A = 2/4 + 2/28 + 2/70 + 2/130 + 2/208
A = 2/1x4 + 2/4x7 + 2/7x10 + 2/10x13 + 2/13x16
A = 2 - 2/4 + 2/4 - 2/7 + 2/7 - 2/10 + 2/10 - 2/13 + 2/13 - 2/16
A = 2 - 2/16
A = bạn tự tính nhé !
1) Tính nhanh
\(A=\frac{4}{7}+\frac{3}{4}+\frac{2}{7}+\frac{5}{4}+\frac{1}{7}\)
\(=\left(\frac{4}{7}+\frac{2}{7}+\frac{1}{7}\right)+\left(\frac{3}{4}+\frac{5}{4}\right)\)
\(=1+2=3\)
Ghép tương tự vs B
|5+6+9+7+3+8+5+4+72+569+45555+535+45555+78982+45|*|123+(7-130)|
=|5+6+9+7+3+8+5+4+72+569+45555+535+45555+78982+45|*|123-123|
=0
**************nha
Sửa đề: 7/4+7/28+...+7/550
=7/1*4+7/4*7+7/7*10+...+7/22*25
=7/3(1-1/4+1/4-1/7+...+1/22-1/25)
=7/3*24/25=56/25