Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
S = 1 - 2 + 3 - 4 + .... + 2005 - 2006
= ( 1- 2 ) + ( 3 - 4 ) + ... + ( 2005 - 2006 )
= - 1 + -1 + .... + -1
= - [(-1) . 1003 ) ( Vì 2006 : 2 = 1003 )
= - 1003
S = 1 - 2 + 3 - 4 +. . . . + 2005 - 2006
S = (1-2) + (3-4) + . . . . + (2005-2006)
S = -1 + (-1) + . . . . + (-1) có 1003 số -1
S = -1 . 1003
S = -1003
1/
6 = 1*2*3
24 = 2*3*4
.......
Số thứ 100: 100*101*102
TỔng dãy trên là A thì bằng:
A = 1*2*3 + 2*3*4 + ..... + 100*101*102
4A = 1*2*3*4 + 2*3*4*4 + .... + 100*101*102*4
4A = [1*2*3*4 - 0*1*2*3]+ [2*3*4*5 - 1*2*3*4]+ ...+[100*101*102*103 - 99*100*101*102]
4A = 0*1*2*3 + [1*2*3*4-1*2*3*4]+[2*3*4*5-2*3*4*5]+..........+[99*100*101*101-99*100*101*102] + 100*101*102*103
4A = 100*101*102*103
A = 25*101*102*103 = 26527650
2/
\(A=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{73\cdot76}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{73}-\frac{1}{76}\)
\(A=\frac{1}{4}-\frac{1}{76}=\frac{9}{38}\)
P/s: Vì tử bằng khoẳng cách dưới mẫu nên ta có thể rút gọn nhanh như vậy
\(K=1+11+11^2+...+11^{99}\)
\(11K=11+11^2+11^3+...+11^{100}\)
\(11K-K=11+11^2+11^3+...+11^{100}-1-11-11^2-...-11^{99}\)
\(10K=11^{100}-1\)
\(K=\frac{11^{100}-1}{10}\)
1 - 4 + 7 - ... + 331 - 334 ( có 112 số )
= ( 1 - 4 ) + ( 7 - 10 ) + .... + ( 331 - 334 ) ( có 56 nhóm )
= ( - 3 ) + ( - 3 ) + ..... + ( - 3 ) ( có 56 số )
= ( - 3 ) . 56
= -168
\(1-4+7-10+......+331-334\)( có 112 số hạng )
\(=\left(1-4\right)+\left(7-10\right)+........+\left(331-334\right)\)( có 56 nhóm )
\(=-3+\left(-3\right)+.........+\left(-3\right)\)( có 56 số - 3 )
\(=-3\cdot56\)
\(=-168\)
Lần sau viết cái đề rõ rõ ra nhs!!!
a) \(A=2+2^2+2^3+................+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+................+2^{100}+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+..............+2^{100}+2^{101}\right)-\left(2+2^2+............+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
b) \(B=1+3+3^2+..................+3^{2009}\)
\(\Rightarrow3B=3+3^2+3^3+..................+3^{2009}+3^{2010}\)
\(\Rightarrow3B-B=\left(3+3^2+...............+3^{2010}\right)-\left(1+3+3^2+.............+3^{2009}\right)\)
\(\Rightarrow2B=3^{2010}-1\)
\(\Rightarrow B=\dfrac{3^{2010}-1}{2}\)
c) \(C=4+4^2+4^3+................+4^n\)
\(\Rightarrow4C=4^2+4^3+.................+4^n+4^{n+1}\)
\(\Rightarrow4C-C=\left(4^2+4^3+.............+4^n+4^{n+1}\right)-\left(4+4^2+............+4^n\right)\)
\(\Rightarrow3C=4^{n+1}-4\)
\(\Rightarrow C=\dfrac{4^{n+1}-4}{3}\)
\(M=1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{3}+\dfrac{3}{15}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)
Chứng minh chia hết cho 31
C = 2 + 22 + 23 + ... + 299 + 2100
= ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
= 2( 1 + 2 + 22 + 23 + 24 ) + 26( 1 + 2 + 22 + 23 + 24 ) + ... + 296( 1 + 2 + 22 + 23 + 24 )
= 2.31 + 26.31 + ... + 296.31
= 31( 2 + 26 + ... + 296 ) chia hết cho 31 ( đpcm )
Tính tổng C
C = 2 + 22 + 23 + ... + 299 + 2100
=> 2C = 2( 2 + 22 + 23 + ... + 299 + 2100 )
= 22 + 23 + ... + 2100 + 2101
=> C = 2C - C
= 22 + 23 + ... + 2100 + 2101 - ( 2 + 22 + 23 + ... + 299 + 2100 )
= 22 + 23 + ... + 2100 + 2101 - 2 - 22 - 23 - ... - 299 - 2100
= 2101 - 2
Tìm x để 22x-1 - 2 = C
22x-1 - 2 = C
<=> 22x-1 - 2 = 2101 - 2
<=> 22x-1 = 2101
<=> 2x - 1 = 101
<=> 2x = 102
<=> x = 51
Giả sử bạn có n=100, bây giờ bạn muốn tính tổng 1+2+...+100 thì bạn dùng công thức sau:
=(1+n)*n/2 = (1+100)*100/2 = 5050
TP.