Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2: Ta có \(S=6^2+18^2+30^2+...+126^2\)
\(S=6^2\left(1^2+3^2+5^2+...+21^2\right)\)
\(=6^2.1771=36.1771=63756\)
\(3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+...+100}\)
\(=3+3.\left(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)
\(=3+3.\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\right)\)
\(=3+3.\frac{1}{2}.\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)
\(=3+\frac{3}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=3+\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=3+\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=3+\frac{3}{2}.\frac{99}{202}\)
\(=3+\frac{297}{404}\)
\(=\frac{1509}{404}\)
chỗ 3+3/2(1/6+..)
bn nhìn nhầm rồi
đáng lẽ: 3+(1/6+,.....) chứ nâk
Ta có Tổng quát \(\frac{1+2+3+...+n}{\left(n+1\right)}=\frac{\frac{\left(n+1\right)n}{2}}{n+1}\)
= \(\frac{n}{2}\)
=> A = \(\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+...+\frac{2012}{2}\)
= \(\frac{1+2+3+..+2012}{2}=\frac{2025078}{2}=1012539\)
Đặt \(A=1^3+2^3+3^3+...+n^3\)
\(=\left(1+2+3+...+n\right)^2\)
\(=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
\(=\frac{\left[n\left(n+1\right)\right]^2}{4}\)
a/ Công thức tính là \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Áp dụng vào tính nha
b/\(\frac{\left(n\left(n+1\right)\right)^2}{4}\)