Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1+2+2^2+2^3+...+2^{100}\)
Ta có: \(2A=2+2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{101}\right)\)\(-\left(1+2+2^2+...+2^{100}\right)=\)\(2-2^{101}\)
1) Đặt A = 1 + 2 + 22 + 23 + ... + 2100 + 2101
2A = 2 + 22 + 23 + 24 + ... + 2101 + 2102
2A - A = (2 + 22 + 23 + 24 + ... + 2101 + 2102) - (1 + 2 + 22 + 23 + ... + 2100 + 2101)
A = 2102 - 1
2) Lm tương tự câu a, có j thắc mắc cứ hỏi
mk làm bài 2 trước nhé
\(\frac{x+2}{2}=\frac{72}{x+2}\)
\(=>\left(x+2\right)^2=72.2=144=12^2\)
\(=>x+2=12\)
\(=>x=12-2=10\)
a) C = 2100 - 299 + 298 - 297 + ... + 22 - 2
=> C = ( 2100 + 298 + ... + 22 ) - ( 299 + 297 + ... + 2 )
Đặt C = A - B
=> 22A = ( 24 + 26 + ... + 2102 )
=> 22A - A = ( 24 + 26 + ... + 2102 ) - ( 22 + 24 + ... + 2100 )
=> 3A = 2102 - 22
=> A = 2102 - 22 / 3
áp dụng tính B rồi tìm C
đặt A = (cái trên )
2A=1+2^2+...+2^101
-
A=1+2+....+2^100
------------------------------
A= 2^101 - 1
B = 5+5^2+......+5^99
5B=5^2+5^3+....+5^100
-
B = 5+5^2+......+5^99
-----------------------------------
4B= 5^100-5
B=(5^100 - 5)/4
học tốt nha
tổng quát cho bạn luôn
A=n+n^2 + ....+ n^n
nA= n^2 + n^3 +....+n^(n+1)
-
A=n+n^2 + ....+ n^n
------------------------------------------
(n-1)A = n^(n+1) - n
A= (n^(n+1) - n) / (n-1)
ok
tuy nhiên một vài trường hợp(như câu B) thôi nha còn lại cũng na ná như thế