
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A = 1( 0 + 1 ) + 2 ( 1 + 1 ) + 3 ( 2 + 1 ) + 4 ( 3 + 1 ) + .... + 10 ( 9 + 1 )
= 1.0 + 1.2+2.3 + 3.4 + .... + 9.10 + 1 + 2 + 3 + ... + 10
Đặt B = 1.2 + 2.3 + ... + 9.10
C = 1 + 2 + 3 + ... + 10
B = 1.2 + 2.3 + ... + 9.10
3B = 1.2.3 + 2.3.(4-1) + ... + 9.10.(11 - 8 )
= 1.2.3 + 2.3.4 - 1.2.3 + ... - 8.9.10 + 9.10.11
=> B = \(\frac{9.10.11}{3}=330\)
C = \(\frac{10.11}{2}=55\)
=>A = B + C = 330 + 55 = 385
A = 1.1 + 2.(1 + 1) + 3.(1 + 2) + ...+ 10.(1 +9)
A = 1 + 2 + 2.1 + 3 + 3.2 + ...+ 10 + 10.9
A = (1+2+3+...+ 10) + (1.2 + 2.3+ ...+ 9.10)
Tính 1+2+3+..+10 = (1 + 10).10 : 2 = 55
Tính B = 1.2 + 2.3 + ...+ 9.10
3.B = 1.2.3 + 2.3. (4 - 1) + ...+ 9.10. (11- 8) = 1.2.3 + 2.3.4 - 1.2.3 + ...+ 9.10.11 - 8.9.10
3.B = (1.2.3 + 2.3.4 + ...+ 9.10.11) - (1.2.3 + ...+ 8.9.10) = 9.10.11 => B = 3.10.11 = 330
Vậy A = 55 + 330 = 385

A=1+2+2^2+2^3+2^4+2^5
2A=2+2^2+2^3+2^4+2^5+2^6
2A-A=(2+2^2+2^3+2^4+2^5+2^6)-(1+2+2^2+2^3+2^4+2^5)
A=2^6-1
A=64-1
A=63
B=10+12+14+....+2010
B=(2010+10).1001:2
B=2020.1001:2
B=2022020:2
B=1011010

a, A = 1+7+72+73+...+710
7A = 7+72+73+74+...+711
6A = 7A - A = 711 - 1
=> A = \(\frac{7^{11}-1}{6}\)
b, B = 1+3+32+33+...+3100
3B = 3+32+33+34+....+3101
2B = 3B - B = 3101 - 1
=> B = \(\frac{3^{101}-1}{2}\)

\(A=2+2^2+2^3+...+2^{2010}\)
\(2A=2^2+2^3+2^4+...+2^{2011}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{2011}\right)-\left(2+2^2+2^3+...+2^{2010}\right)\)
\(A=2^{1011}-2\)
Đặt A = 21 + 22 + ... + 22010
=> 2A = 22 + 23 + ... + 22011
=> 2A - A = ( 22 + 23 + ... + 22011 ) - ( 21 + 22 + ... + 22010 )
A = 22011 - 2
VẬy A = 22011 - 2

a/ Ta tính trường hợp tổng quát có n số hạng. Ta có:
+/ S1 = 1 + 2 + 3 + ....+n = \(\frac{n\left(n+1\right)}{2}\)
+/ S2 = 1.2 + 2.3 + 3.4 +...+ n(n+1)
3S2 = 1.2.3 + 2.3.3 + 3.4.3 +..+ n(n+1).3
3S2= 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +..+ n(n+1)(n+2 -(n-1))
3S2= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +.. - (n-1)n(n+1) + n(n+1)(n+2)
3S2= n(n+1)(n+2)
=> S2 = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Tính S = 1² + 2² + ...+ n²
Ta có: S2 - S1 = [1.2 + 2.3 + 3.4 +...+ n(n+1)]-(1 + 2 + 3 + ....+n)
=> S2 - S1=(1.2-1)+(2.3-2)+(3.4-3)+...+[n(n+1)-n]
=> S2 - S1=1+4+9+...+n2=12+22+32+...+n2=S
Như vậy: S=S2-S1=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)
=> \(S=n\left(n+1\right).\left(\frac{n+2}{3}-\frac{1}{2}\right)\)
=> \(S=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Thay n=98 => \(S=\frac{98.99.197}{6}=318549\)
b/ 2014.2016=2014(2015+1)=2014+2014.2015=2014+2015(2015-1)=2014+20152-2015=20152-1<20152
Vậy 2014.2016<20152
gọi tổng là A.ta có
\(A=1+2+2^2+....+2^{10}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{11}\right)-\left(1+2+2^2+....+2^{10}\right)\)
\(\Rightarrow A=2^{11}-1\)
A=1+2+22+...+210
=>2A=2+22+23+...+211
=>2A-A=(2+22+23+...+211)-(1+2+22+...+210)=211-1