K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

Hình như đề bài phải là : Tính tổng : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}+\frac{1}{2010.2011}\)

Nếu thế giải như sau : \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2010}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}=\frac{2010}{2011}.\)Vậy tổng đó là 2010/2011.

7 tháng 6 2019

Ta có :\(\frac{1}{1}:2+\frac{1}{2}:3+...+\frac{1}{2010}:2011\)

\(\frac{1}{1}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{2010}\times\frac{1}{2011}\)

\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2010\times2011}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(1-\frac{1}{2011}\)

\(\frac{2010}{2011}\)

18 tháng 5 2019

\(\frac{1}{1}:2+\frac{1}{2}:3+\frac{1}{3}:4+...+\frac{1}{2009}:2010+\frac{1}{2010}:2011\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}+\frac{1}{2010.2011}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2010}-\frac{1}{2011}\)

\(=1-\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{2009}-\frac{1}{2009}\right)+\left(\frac{1}{2010}-\frac{1}{2010}\right)-\frac{1}{2011}\)

\(=1-\frac{1}{2011}=\frac{2010}{2011}\)

~ Hok tốt ~

18 tháng 5 2019

\(\frac{1}{1}:2+\frac{1}{2}:3+\frac{1}{3}:4+...+\frac{1}{2009}:2010+\frac{1}{2010}:2011\)

\(=\frac{1}{1}:\frac{2}{1}+\frac{1}{2}:\frac{3}{1}+\frac{1}{3}:\frac{4}{1}+...+\frac{1}{2009}:\frac{2010}{1}+\frac{1}{2010}:\frac{2011}{1}\)

\(=\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+...+\frac{1}{2009}\cdot\frac{1}{2010}+\frac{1}{2010}\cdot\frac{1}{2011}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2010}+\frac{1}{2010\cdot2011}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}=\frac{2010}{2011}\)

Dấu " . " là dấu nhân nhé

4 tháng 3 2018

A=\(\frac{1+\frac{2011}{2}+1+\frac{2010}{3}+1+...+\frac{1}{2012}+1+1}{\frac{1}{2}+...+\frac{1}{2013}}\)

A=\(\frac{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+...+\frac{1}{2013}}\)

A=\(\frac{2013\left(\frac{1}{2}+...+\frac{1}{2013}\right)}{\frac{1}{2}+...+\frac{1}{2013}}\)

A=2013

Mà 2013: 3 = 671

Vậy A : 3 dư 0 hay\(A⋮3\)

4 tháng 3 2018

vì sao bạn lại 1+

19 tháng 5 2016

a=1/2.2+1/3.3+1/4.4+...+1/2009.2009+1/2010.2010(có 2009 số hạng)

a=1+1+1+...+1+1(2009 số 1)

a=1.2009=2009

Vậy a>1

18 tháng 3 2023

https://scratch.mit.edu/projects/782275470