Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \({u_1} = 1\)
\( \Rightarrow {u_2} = 2.1 = 2\)
\( \Rightarrow {u_3} = 3.2 = 6\)
\( \Rightarrow {u_4} = 4.6 = 24\)
\( \Rightarrow {u_5} = 5.24 = 120\)
b)
Ta có:
\({u_2} = 2 = 2.1 \)
\({u_3} = 6= 1.2.3 \)
\({u_4} = 24 = 1.2.3.4\)
\({u_5} = 120 = 1.2.3.4.5\)
\( \Rightarrow {u_n} = 1.2.3....n = n!\).
Đáp án đúng là: A
Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 3\). Do đó dãy số (un) là một cấp số nhân với số hạng đầu \({u_1} = \frac{1}{3}\) và công bội q = 3 nên ta có số hạng tổng quát là: \({u_n} = \frac{1}{3}{.3^{n - 1}} = {3^{n - 2}}\) với n ∈ ℕ*.
Do đó số hạng thứ năm của dãy số (un) là: \({u_5} = {3^{5 - 2}} = 27\).
a) \({u_n} = 3n - 2\)
\( \Rightarrow {u_1} = 3.1 - 2 = 1\)
\( \Rightarrow {u_2} = 3.2 - 2 = 4\)
\( \Rightarrow {u_3} = 3.3 - 2 = 7\)
\( \Rightarrow {u_4} = 3.4 - 2 = 10\)
\( \Rightarrow {u_5} = 3.5 - 2 = 13\)
\( \Rightarrow {u_{100}} = 3.100 - 2 = 298\)
b) \({u_n} = {3.2^n}\)
\( \Rightarrow {u_1} = {3.2^1} = 6\)
\( \Rightarrow {u_2} = {3.2^2} = 12\)
\( \Rightarrow {u_3} = {3.2^3} = 24\)
\( \Rightarrow {u_4} = {3.2^4} = 48\)
\( \Rightarrow {u_5} = {3.2^5} = 96\)
\( \Rightarrow {u_{100}} = {3.2^{100}}\)
c) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\)
\( \Rightarrow {u_1} = {\left( {1 + \frac{1}{1}} \right)^1} = 2\)
\( \Rightarrow {u_2} = {\left( {1 + \frac{1}{2}} \right)^2} = \frac{9}{4}\)
\( \Rightarrow {u_3} = {\left( {1 + \frac{1}{3}} \right)^3} = \frac{{64}}{{27}}\)
\( \Rightarrow {u_4} = {\left( {1 + \frac{1}{4}} \right)^4} = \frac{{625}}{{256}}\)
\( \Rightarrow {u_5} = {\left( {1 + \frac{1}{5}} \right)^5} = \frac{{7776}}{{3125}}\)
\( \Rightarrow {u_{100}} = {\left( {1 + \frac{1}{{100}}} \right)^{100}} = {\left( {\frac{{101}}{{100}}} \right)^{100}}\)
6:
\(u_n=8+7\left(n-1\right)=7n+1\)
7: Đặt un=7/12
=>\(\dfrac{2n+5}{5n-4}=\dfrac{7}{12}\)
=>35n-28=24n+60
=>11n=88
=>n=8
=>Đây là số hạng thứ 8
8: \(\dfrac{2n}{n^2+1}=\dfrac{9}{41}\)
=>9n^2+9=82n
=>9n^2-82n+9=0
=>(9n-1)(n-9)=0
=>n=9(nhận) hoặc n=1/9(loại)
=>Đây là số thứ 9
10B
9D
Ta có: \({u_n} - {u_{n - 1}} = \left( {2n - 1} \right) - \left[ {2\left( {n - 1} \right) - 1} \right] = 2\)
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2 \times 1 - 1 = 1,\;\;\;d = 2\)
\({S_{100}} = \frac{{100}}{2}\left[ {2 \times 1 + \left( {100 - 1} \right).2} \right] = 10\;000\)
Chọn đáp án C.
a) 5 số hạng đầu của dãy số là: 1; 2; 6; 24; 120.
b) \({F_1} = 1,\;{F_2} = 1,\;{F_3} = 2,\;{F_4} = 3,\;{F_5} = 5\;\).
Ta có:
\(\begin{array}{l}{u_2} = \frac{{{u_1}}}{{1 + {u_1}}} = \frac{1}{{1 + 1}} = \frac{1}{2}\\{u_3} = \frac{{{u_2}}}{{1 + {u_2}}} = \frac{{\frac{1}{2}}}{{1 + \frac{1}{2}}} = \frac{1}{3}\end{array}\)
Suy ra, \({u_n} = \frac{1}{n}\)
a) Dãy số trên là cấp số cộng
Ta có:
\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = 3 - 2n\\ \Leftrightarrow {u_1} + nd - d = 3 - 2n\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = 3\\nd = - 2n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = - 2\end{array} \right.\end{array}\)
b) Dãy số trên là cấp số cộng
Ta có:
\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = \frac{{3n + 7}}{5}\\ \Leftrightarrow {u_1} + nd - d = \frac{{3n}}{5} + \frac{7}{5}\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = \frac{7}{5}\\nd = \frac{3}{5}n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\d = \frac{3}{5}\end{array} \right.\end{array}\)
c) Dãy số đã cho không là cấp số cộng
Ta có: \( u_{n+1} = 3^{n+1} = 3.3^n \)
Xét hiệu \( u_{n+1} – u_n = 3.3^n – 3^n = 2.3^n \) với n ∈ ℕ*
Ta có:
\({u_n} = 0,3n + 5 \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = 5\\nd = 0,3n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 5,3\\d = 0,3\end{array} \right.\)
Tổng 100 số hạng đầu: \({S_{100}} = \frac{{\left( {{u_1} + {u_{100}}} \right).100}}{2} = \frac{{\left( {5,3 + 0,3.100 + 5} \right).100}}{2} = 2015\)