K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

Đáp án B

31 tháng 7 2019

Đáp án C

Em có:  S = 1. q n − 1 q − 1 = q n − 1 q − 1 .

Vì cấp số nhân mới tạo thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu thành nghịch đảo của nó nên cấp số nhân mới sẽ có công bội là  1 q .

Gọi S' là tổng mới của cấp số nhân mới.

Em có:  S ' = 1 q n − 1 1 q − 1 = 1 − q n q n . 1 − q q = 1 − q n 1 − q . 1 q n − 1 = S q n − 1 .

Vậy tổng của cấp số nhân mới là:  S q n − 1 .

17 tháng 2 2017

Chọn đáp án D.

8 tháng 12 2017

S=4.

Đáp án B

22 tháng 10 2018

1 tháng 4 2018

Đáp án B

Ta có u 1 = 2 u 4 = u 1 q 3 = 2 q 3 = 54 ⇒ q = 3 ⇒ S 10 = u 1 1 - q 10 1 - q = 59048 .

11 tháng 1 2018

Chọn đáp án C.

17 tháng 2 2016

Bài 2:

a) Ta có:

\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)

Vậy \(S\) \(\text{⋮}\) \(-20\)

17 tháng 2 2016

Bài 1:

Ta có:

\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)

\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)

\(=\left(-12\right).m^2.3.n^3\)

\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)

Xét: \(m^2\ge0\) với V m

3>0 nên \(m^2.3\ge0\) với V m

Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)

-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)

Vậy với n<0 và mọi m thì \(A\ge0\)

 

8 tháng 6 2019

Chọn D.

Phương pháp

Tổng của n số hạng đầu của CSC có số hạng đầu là u1 và công sai d: