K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

Kết quả là 50500 ban nhe 

Cách làm ;

Ta thấy dãy số trên là dãy số cách đều với khoảng cách là 10 đơn vị . từ 10 đến 100 có 10 số hạng và từ 110 đến 200 cũng có 10 số hạng ...Vậy ta có số hạng thứ 100 của  dãy là :10x100=1000

Tổng dãy số đó là;1000+10x100:2=50500

25 tháng 2 2017

5050 nnnn

7 tháng 7 2015

nhớ l-i-k-e hết đó nha 

chuc ban hoc tot

6 tháng 7 2016

bạn biết giải k giải đi chứ mình k hiểu

2 tháng 7 2016

a﴿Tổng trên có:﴾100‐7﴿:3+1=32﴾số hạng﴿

 b﴿Gọi số hạng thứ 22 cửa tổng trên là n

Theo đề bài ta có :

﴾n‐7﴿:3+1=22

﴾n‐7﴿:3 =22‐1

﴾n‐7﴿:3 =21

n‐7 =21

.3 n‐7 =63

n =63+7

n =70

Vậy số hạng thứ 2 của tổng trên là 70

c﴿ Tổng S là: ﴾100+7﴿.32:2=3424

k nha bn

a. Tổng trên có số số hạng là :

(100 - 7) : 3 + 1 = 32 ( số )

b. Số hạng thứ 22 là :

(22 - 1) x 3 + 7 = 67

c. Tổng của S là :

(100 + 7) x 32 : 2 = 1712

Đáp số : a. 32 số

b. 67

c. 1712

26 tháng 8 2020

ta có:

dãy số trên thuộc bảng nhân 5 :)

=> a) tổng 100 số hạng đầu tiên là:

5.1 + 5.2 + 5.3 + 5.4 + 5.5 ....... + 5.99 + 5.100 ( dấu chấm là dấu nhân nha)

= 5(1 +2 + 3 + 4 + 5 ... + 100)

5[ (1 + 99)+(2 + 98)+(3+97)+...+(49+51) + 50 ]

5.4950 = 24750

b) số 1995 thuộc số hạng là 1995 : 5 = 399

vậy số 1995 thuộc thứ hạng số 399

d) 2841 không thuộc dãy số trên vì nó không chia hết cko 5 

chúc bạn học tốt :)

20 tháng 9 2015

Tổng trên có :                        (   100 - 7 )    : 3 + 1 = 32 ( số hang )

Số hạng thứ 22 là :           (  22 - 1 ) . 3 + 7 = 70 

13 tháng 12 2015

câu 1: 

Số số hạng là:

(2012-2):2+1= 1006(số)

tổng là:

(2012+2) x 1006:2=1013042

Đ/s: .......

Câu 2: 

bạn vào đây

Câu 3:Đại hòa thượng 1người ăn 3 cái bánh bao
Tiểu hòa thượng 3 người ăn 2 cái bánh bao
Dựa vào 2 mệnh đề này ta thấy:
Cứ 1 nhóm 4 hòa thượng gồm 3 tiểu hòa thượng 1 đại hòa thượng thì ăn 5 cái bánh bao. Nếu ta chia 100 hòa thượng thành từng nhóm 4 người sẽ là 100 : 4 = 25 nhóm
Trong 25 nhóm này thì đại hòa thượng có 25 còn tiểu hòa thượng là 75. Nhờ cách xếp như vậy ta dễ dàng tính được chính xác số đại hòa thượng và tiểu hòa thượng.

mình ko biết có đúng ko nhưng mong bạn tích

26 tháng 8 2017

1)55=4+5+6+7+8+9+10+11

26 tháng 8 2017

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN.