Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. với a=2,5 thì \(\sqrt{a^2}\) =\(\left|a\right|=\)\(\left|2.5\right|=2.5\)
với a=0,3 thì \(\sqrt{a^2}\) =\(\left|a\right|=\)\(\left|0,3\right|=0,3\)
với a=-0,1 thì \(\sqrt{a^2}\) =\(\left|a\right|=\)\(\left|-0,1\right|=0,1\)
Bài 4:
a: \(=\sqrt{\dfrac{10.8}{0.3}}=\sqrt{36}=6\)
b: \(=\sqrt{\dfrac{7}{175}}=\sqrt{\dfrac{1}{25}}=\dfrac{1}{5}\)
c: \(=\sqrt{\dfrac{2.84}{0.71}}=2\)
d: \(=\sqrt{\dfrac{625}{144}}=\dfrac{25}{12}\)
1: \(\cos70^0=\dfrac{AB^2+BC^2-AC^2}{2\cdot AB\cdot BC}\)
\(\Leftrightarrow48,68-AC^2=13,57\)
hay \(AC=5,93\left(cm\right)\)
1.
Kẻ đường cao CH
Xét tam giác vuông HCB,ta có:
góc B + góc C1 =900
600 + góc C1 =900
=> góc C1 = 300 => góc C2 =100
Áp dụng hệ thức cạnh và góc trong tam giác vuông CBH và tam giác vuông CAH,ta có:
HB= BC x cot góc B = 9 x cot 600 = 3√3 (cm)
=>HC=BC2 - HB2 =92 - (3√3)2 = 3√6 (cm) (Đinh lí Py-ta-go)
AH= HC x tan góc C2 = 3√6 x tan 100 =1,3 (cm)
Ta có: AB = AH + HB nên AB = AH + HB =6,49 (cm)
AC = AH : sin góc C2 = 7,49 (cm)
Vậy AB = 6,49 cm ; AC = 7,49 cm
2.
Kẻ đường cao AH.
Áp dụng hệ thức cạnh và góc trong tam giác vuông ABH,ta có:
BH = AB x cos góc B = 3,2 x cos 700 = 1,09 (cm)
AH= BH x tan góc B =1,09 x tan 700 = 2,99 (cm)
Ta có : BC - BH = HC
=> HC = 6,2 - 2,99 = 3,21 (cm)
Áp dụng định lí Py-ta-go vào tam giác vuông AHC,ta có:
AC2 = AH2 +HC2 = (2,99)2 +(3,21)2 =>AC= 4,39 (cm)
Vậy AC = 4,39 cm.
Sai có gì góp ý với tui nha
\frac{\sqrt{\left(6.2\right)^{2}-\left(5.9\right)^{2}}}{\sqrt{2.43}}