K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2019

NV
18 tháng 10 2020

Gọi \(A\left(x;x^3+3x+1\right)\) là 1 điểm thuộc \(f\left(x\right)\)

Gọi \(A'\left(x';y'\right)\) là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in g\left(x\right)\)

\(\Rightarrow y'=x'^3-3x'^2+6x'-1\) (1)

Ta có: \(\left\{{}\begin{matrix}x'=x+a\\y'=x^3+3x+1+b\end{matrix}\right.\)

Thay vào phương trình (1) ta được:

\(x^3+3x+1+b=\left(x+a\right)^3-3\left(x+a\right)^2+6\left(x+a\right)-1\)

\(\Leftrightarrow2+b=3ax^2+3a^2x+a^3-3x^2-6ax-3a^2+3x+6a\)

\(\Leftrightarrow x^2\left(3a-3\right)+x\left(3a^2-6a+3\right)+\left(a^3-3a^2+6a-b-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a-3=0\\3a^2-6a+3=0\\a^3-3a^2+6a-b-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) \(\Rightarrow P=3\)

24 tháng 1 2019

Với x 0   =   1 thì y 0   =   2016  và f’(1) = 0.

- Do đó, phương trình tiếp tuyến tại điểm có hoành độ x= 1 là

   y = 0(x- 1) + 2016 hay y = 2016.

3 tháng 3 2017

- Tiếp tuyến (d) tại điểm M của đồ thị (C) có hoành độ  x 0   =   0   ⇒   y 0   =   3 .

- Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Phương trình tiếp tuyến (d) tại điểm M của đồ thị (C) là:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Xét phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d là nghiệm phương trình :

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Với x = -4 thì y = 9.(-4) – 15 = -51.

- Vậy N(- 4 ; -51) là điểm cần tìm.

Chọn C.

11 tháng 12 2017

Ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

5 tháng 5 2023

I. Hàm số xác định trên D = R.

+) \(\lim\limits f\left(x\right)_{x\rightarrow1}=\lim\limits_{x\rightarrow1}\dfrac{x^2-3x+2}{x-1}\)

                        \(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)}\) 

                        \(=\lim\limits_{x\rightarrow1}\left(x-2\right)\)

                        \(=-1\)

+) \(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\left(1-2x\right)=-1\)

=> Hàm số liên tục tại x0 = 1

II. Gọi phương trình tiếp tuyến tại N(x0; y0) là:

y = y'(x0)(x - x0) + y0

y = -x3 - x2 - 6x + 1 

=> y' = -3x2 - 2x + 6 

Vì tiếp tuyến song song với đường thẳng y = -6x + 17 => y'(x0) = 6

<=> -3x2 - 2x + 6 = 6

<=> -3x2 - 2x = 0

<=> -x(3x + 2) = 0

<=> x = 0 hoặc x = -2/3

Trường hợp 1: x0 = 0 => y0 = 0

=> y'(x0) = 6

=> Phương trình tiếp tuyến: y = 6(x - 0) + 1

                                      <=> y = 6x + 1

Trường hợp 2: x0 = -2/3 => y0 = 37/9

=> y'(x0) = 9

=> Phương trình tiếp tuyến: y = 9(x + 2/3) + 37/9

                                      <=> y = 9x + 91/9

25 tháng 8 2021

Do \(\overrightarrow{u}\) cùng phương với \(\overrightarrow{i}=\left(1;1\right)\) nên tồn tại một số thực t sao cho \(\overrightarrow{u}=t.\overrightarrow{i}\) ⇒ \(\overrightarrow{u}=\left(t;t\right)\) 

d : 3x - y - 7 = 0 nên A (2 ; - 1) ∈ d

Sau khi thực hiện phép tịnh tiến thì ta được điểm B trên d; : 3x - y + 13

thỏa mãn \(\overrightarrow{AB}=\overrightarrow{u}=\left(t;t\right)\)

⇒ B (t + 2 ; t - 1)

Do B ∉ d' ⇒ 3(t + 2) - (t - 1) + 13 = 0

⇒ t = - 10

⇒ Vecto tịnh tiến là \(\overrightarrow{u}=\left(-10;-10\right)\)

NV
17 tháng 12 2020

Trước hết chúng ta cần nói sơ đến định lý Viet cho pt bậc 3:

Pt bậc 3 có dạng \(ax^3+bx^2+cx+d=0\) có 3 nghiệm \(x_1;x_2;x_3\) thì:

\(x_1+x_2+x_3=-\dfrac{b}{a}\)

Giả sử tọa độ B có dạng \(B\left(x_B;y_B\right)\)  và pt đường thẳng d qua B có dạng: 

\(y=ax+b\)

Pt hoành độ giao điểm d và (C):

\(x^3-3x^2+2=ax+b\)

\(\Leftrightarrow x^3-3x^2-ax+2-b=0\) (1)

Do d tiếp xúc (C) tại A (có hoành độ giao điểm là hoành độ của A bằng \(x_0\)) và cắt (C) tại B (có hoành độ giao điểm là hoành độ của B) nên \(x_0\) là nghiệm kép và \(x_B\) là nghiệm đơn của (1)

Hay nói cách khác, \(x_0;x_0;x_B\) là 3 nghiệm của (1)

Theo hệ thức Viet: \(x_0+x_0+x_B=3\Leftrightarrow x_B=3-2x_0\)

\(B\in\left(C\right)\Rightarrow y_B=\left(3-x_0\right)^3-3\left(3-x_0\right)^2+2=-x_0^3+6x_0^2-9x_0+2\)

Vậy tọa độ B có dạng: \(B\left(3-x_0;-x_0^3+6x_0^2-9x_0+2\right)\)

18 tháng 12 2020

undefined

23 tháng 10 2017

Ta có:

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 2)

Chọn A.