\(\frac{1}{4}\)) ( 1-\(\frac{1}{9}\)) ( 1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

\(=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{399}{400}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{19.21}{20.20}\)

\(=\frac{1.2.3.....19}{2.3.4.....20}.\frac{3.4.5.....21}{2.3.4.....20}\)

\(=\frac{1}{20}.\frac{21}{2}\)

\(=\frac{21}{40}\)

3 tháng 4 2018

\(\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{400}\right)\)

\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{399}{400}\)

\(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{19.21}{20.20}\)

\(\frac{1.2.3...19}{2.3.4...20}.\frac{3.4.5...21}{2.3.4...20}\)

\(\frac{1}{20}.\frac{21}{2}=\frac{21}{40}\)

11 tháng 8 2018

\(A=\frac{2.3.5+4.9.25+6.9.35+10.21.40}{2.3.7+4.9.35+6.9.49+10.21.56}\)

\(A=\frac{\left(2.3.5\right)+\left(2.3.5\right).2.3.5+\left(2.3.5\right).3.3.7+\left(2.3.5\right).5.7.8}{\left(2.3.7\right)+\left(2.3.7\right).2.3.5+\left(2.3.7\right).3.3.7+\left(2.3.7\right).5.7.8}\)

\(A=\frac{\left(2.3.5\right).\left(1+2.3.5+3.3.7+5.7.8\right)}{\left(2.3.7\right).\left(1+2.3.5+3.3.7+5.7.8\right)}\)

\(A=\frac{2.3.5}{2.3.7}=\frac{5}{7}.\)

\(B=\left(-\frac{3}{4}\right).\left(-\frac{8}{9}\right).\left(-\frac{15}{16}\right)...\left(-\frac{399}{400}\right)\)

\(B=-\frac{1.3.2.4.3.5...19.21}{2.2.3.3.4.4...20.20}\)

\(B=-\frac{1.2.3...19.3.4.5...21}{2.3.4...20.2.3.4...20}=-\frac{21}{40}.\)

5 tháng 7 2016

đúng rồi đó

5 tháng 7 2016

rồi,kp nha

23 tháng 6 2017

\(A=\frac{8}{9}\cdot\frac{15}{16}\cdot\frac{24}{25}\cdot...\cdot\frac{360}{361}\cdot\frac{399}{400}\)

\(A=\frac{2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot18\cdot20\cdot19\cdot21}{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot19\cdot19\cdot20\cdot20}\)

\(A=\frac{2\cdot21}{3\cdot20}\)

\(A=\frac{7}{10}\)

\(B=\frac{9}{8}\cdot\frac{16}{15}\cdot\frac{25}{24}\cdot...\cdot\frac{441}{440}\cdot\frac{484}{483}\)

\(B=\frac{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot21\cdot21\cdot22\cdot22}{2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot20\cdot22\cdot21\cdot23}\)

\(B=\frac{3\cdot22}{2\cdot23}=\frac{33}{23}\)

\(C=\frac{17}{23}.\left(\frac{7}{61}+\frac{28}{61}+\frac{26}{61}\right)\)

\(C=\frac{17}{23}\cdot1=\frac{17}{23}\)

25 tháng 4 2018

a) = 3/3 x ( -24/54 +45/54 ) : 7/12

   = 1 x 21/54 x 12/7

   = 18/27 

( hiện tại mik chỉ lm đc thế này thui. thông cảm nk )

10 tháng 3 2017

1) A = \(\frac{-15}{19}.\frac{23}{37}+\frac{14}{37}.\frac{15}{19}=\frac{15}{19}.\frac{-23}{37}+\frac{14}{37}.\frac{15}{19}=\frac{15}{19}.\left(\frac{-23}{37}+\frac{14}{37}\right)=\frac{15}{19}.\frac{-9}{37}=\frac{-135}{703}\) 

10 tháng 3 2017

TRẢ LỜI ĐI MAI CẦN NỘP !!!

15 tháng 8 2016

Câu 17:

\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2006}\right).\left(1+\frac{1}{2007}\right)\)

=\(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{2007}{2006}.\frac{2008}{2007}\)

\(=\frac{2008}{2}=1004\)

15 tháng 8 2016

Câu 18:

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2006}\right).\left(1-\frac{1}{2007}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2005}{2006}.\frac{2006}{2007}\)

\(=\frac{1}{2007}\)

11 tháng 5 2017

Bài 2:

a, S = 1/11 + 1/12 + .. +1/20 với 1/2

SỐ số hạng tổng S: [20 - 11]: 1 + 1 = 10 số

mà 1/11 > 1/20

      1/12 > 1/20

.........................

      1/20 = 1/20

=> 1/11 + 1/12 + ... + 1/20 > 1/20 . 10 => S > 1/2

b, B = 2015/2016 + 2016/2017 và C = 2015+2016/2016+2017

Dễ dàng ta thấy: C = 4031/4033 < 1

B = 2015/2016 + 2016/2017

B = 2015/2016 + [1/2016 + 4062239/4066272]

B = [2015/2016 + 1/2016] + 4062239/4066272]

B = 1 +4062239/4066272

=> B > 1 

Vậy B > C

c, [-1/5]^9 và [-1/25]^5

ta có: 255 = [52]5 = 52.5 = 510 > 59

=> [1/5]9 > [1/25]5

=> [-1/5]9 < [-1/25]5

d, 1/32+1/42+1/52+1/62 và 1/2

ta có: 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 = 1/9 + 1/16 + 1/25 + 1/36

mà: 1/9 < 1/8

      1/16 < 1/8

      1/25 < 1/8

      1/36 < 1/8

=> 1/9+1/16+1/25+1/36 < 1/2

Vậy 1/32+1/42+1/52+1/62 < 1/2

11 tháng 5 2017

Bài 1:

A = 3/4 . 8/9 . 15/16....2499/2500

A = [1.3/22][2.4/32]....[49.51/502]

A = [1.2.3.4.5...51 / 2.3.4....50][3.4.5...51 / 2.3.4...50]

A = 1/50 . 51/2

A = 51/100

B = 22/1.3 + 32/2.4 + ... + 502/49.51

B = 4/3.9/8....2500/2499

Nhận thấy B ngược A => B = 100/51 [cách tính tương tự tính A]

Bài 2:

a. S = 1/11+1/12+...+1/20 và 1/2

Số số hạng tổng S: [20 - 11]: 1 + 1 = 10 [ps]

ta có: 1/11 > 1/20