Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{-\left(\dfrac{4}{5}+\dfrac{1}{3}\right).\dfrac{1}{2}+1}=2\dfrac{33}{52}\)
\(\Leftrightarrow\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{-\dfrac{17}{15}.\dfrac{1}{2}+1}=\dfrac{137}{52}\)
\(\Leftrightarrow\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{\dfrac{13}{30}}=\dfrac{137}{52}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}=\dfrac{137}{52}.\dfrac{13}{30}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}=\dfrac{137}{120}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}=\dfrac{137}{120}+\dfrac{1}{6}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}=\dfrac{157}{120}\)
\(\Leftrightarrow x+\dfrac{3}{4}=\dfrac{157}{120}:\dfrac{7}{2}\)
\(\Leftrightarrow x+\dfrac{3}{4}=\dfrac{157}{420}\)
\(\Leftrightarrow x=\dfrac{157}{420}-\dfrac{3}{4}\)
\(\Leftrightarrow x=-\dfrac{79}{210}\)
Vậy \(x=-\dfrac{79}{210}\).
b) \(\dfrac{\left(5-\dfrac{2}{7}\right).\dfrac{7}{9}.\dfrac{3}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=5\dfrac{5}{21}\)
\(\Leftrightarrow\dfrac{\left(5-\dfrac{2}{7}\right).\dfrac{7}{15}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\dfrac{\dfrac{33}{7}.\dfrac{7}{15}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\dfrac{\dfrac{11}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}=\dfrac{11}{5}:\dfrac{110}{21}\)
\(\Leftrightarrow\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}=\dfrac{21}{50}\)
\(\Leftrightarrow3x-\dfrac{5}{6}=\dfrac{21}{50}.\dfrac{1}{7}\)
\(\Leftrightarrow3x-\dfrac{5}{6}=\dfrac{3}{50}\)
\(\Leftrightarrow3x=\dfrac{3}{50}+\dfrac{5}{6}\)
\(\Leftrightarrow3x=\dfrac{67}{75}\)
\(\Leftrightarrow x=\dfrac{67}{75}:3\)
\(\Leftrightarrow x=\dfrac{67}{225}\)
Vậy \(x=\dfrac{67}{225}\).
Chúc bạn học tốt!
CÁC BẠN GIÚP MK NHA!!!
NGÀY MAI MK NỘP BÀI RỒI
AI TRẢ LỜI NHANH NHẤT
CHÍNH XÁC NHẤT VÀ RÕ RÀNG
THÌ MK TICK CHO NHA!!!
NHỚ TRẢ LỜI NHANH GIÙM MK NHA
a) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}=\left(1\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+0,5=1+1+0,5=2,5\)b)
\(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{7}{7}.33\dfrac{1}{3}=\dfrac{7}{3}\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)=\dfrac{7}{3}.\left(-14\right)=-\dfrac{1}{6}\)
c,
\(\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{5}{7}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-5}{7}\right)=\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{7}{5}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-7}{5}\right)\)
\(\left(-\dfrac{7}{5}\right)\left(15\dfrac{1}{4}+2010-25\dfrac{1}{4}-2016\right)=\left(-\dfrac{7}{5}\right)\left(-10-6\right)=22,4\)
d,
\(\left(2017-\dfrac{3}{7}+\dfrac{9}{11}\right)-\left(2016-\dfrac{3}{7}+\dfrac{8}{17}\right)-\left(2015+\dfrac{9}{11}-\dfrac{8}{17}\right)=2017-\dfrac{3}{7}+\dfrac{9}{11}-2016+\dfrac{3}{7}-\dfrac{8}{17}-2015-\dfrac{9}{11}+\dfrac{8}{17}\)\(\left(2017-2016-2015\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{9}{11}-\dfrac{9}{11}\right)+\left(-\dfrac{8}{17}+\dfrac{8}{17}\right)=-2014\)
Bạn ơi cho mình hỏi tại sao đề bài câu c là -5/7 mà bn lm -7/5
a/ \(\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(6,3.12-21.36\right)}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+2+3+.....+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right).0}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}}\)
\(=\dfrac{0}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}}\)
\(=0\)
a) Ta có: \(\left(\dfrac{9}{25}-2\cdot18\right):\left(3\dfrac{4}{5}+0.2\right)\)
\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+\dfrac{1}{5}\right)\)
\(=\left(\dfrac{9}{25}-\dfrac{900}{25}\right):\dfrac{20}{5}\)
\(=\dfrac{-891}{25}\cdot\dfrac{1}{4}\)
\(=-\dfrac{891}{100}\)
b) Ta có: \(\dfrac{3}{8}\cdot19\dfrac{1}{3}+\dfrac{3}{8}\cdot33\dfrac{1}{3}\)
\(=\dfrac{3}{8}\cdot\dfrac{58}{3}+\dfrac{3}{8}\cdot\dfrac{100}{3}\)
\(=\dfrac{58}{8}+\dfrac{100}{8}\)
\(=\dfrac{158}{8}=\dfrac{79}{4}\)
c) Ta có: \(15\cdot\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)
\(=15\cdot\dfrac{4}{9}-\dfrac{7}{3}\)
\(=\dfrac{20}{3}-\dfrac{7}{3}\)
\(=\dfrac{13}{3}\)
d) Ta có: \(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)
\(=\dfrac{1}{2}\cdot8-\dfrac{2}{5}-1\)
\(=4-1-\dfrac{2}{5}\)
\(=3-\dfrac{2}{5}\)
\(=\dfrac{15}{5}-\dfrac{2}{5}=\dfrac{13}{5}\)
e) Ta có: \(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0.45+\dfrac{3}{4}\right)\cdot\left(-1\dfrac{5}{9}\right)\)
\(=\dfrac{25}{4}\cdot\dfrac{-1}{15}-\left(\dfrac{9}{20}+\dfrac{15}{20}\right)\cdot\dfrac{-14}{9}\)
\(=\dfrac{-25}{60}-\dfrac{24}{20}\cdot\dfrac{-14}{9}\)
\(=\dfrac{-25}{60}+\dfrac{28}{15}\)
\(=\dfrac{-25}{60}+\dfrac{112}{60}\)
\(=\dfrac{87}{60}=\dfrac{29}{20}\)
f) Ta có: \(\left(-\dfrac{1}{3}\right)-\left(-\dfrac{3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)
\(=-\dfrac{1}{3}-1+\left(\dfrac{1}{2}\right)^2\cdot\dfrac{1}{2}\)
\(=\dfrac{-4}{3}+\dfrac{1}{4}\cdot\dfrac{1}{2}\)
\(=\dfrac{-4}{3}+\dfrac{1}{8}\)
\(=\dfrac{-32}{24}+\dfrac{3}{24}=\dfrac{-29}{24}\)
g) Ta có: \(\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{4}\right)^{20}\)
\(=\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{2}\right)^{40}\)
\(=\left(\dfrac{1}{2}\right)^{55}\)
\(=\dfrac{1}{2^{55}}\)
h) Ta có: \(\dfrac{5^4\cdot20}{25^5\cdot4^5}\)
\(=\dfrac{5^4\cdot5\cdot2^2}{5^{10}\cdot2^{10}}\)
\(=\dfrac{5^5}{5^{10}}\cdot\dfrac{2^2}{2^{10}}\)
\(=\dfrac{1}{5^5}\cdot\dfrac{1}{2^8}\)
\(=\dfrac{1}{800000}\)
\(B=\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2018}\)
\(\Rightarrow-\dfrac{1}{7}B=\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+\left(-\dfrac{1}{7}\right)^3+...+\left(-\dfrac{1}{7}\right)^{2019}\)
\(\Rightarrow-\dfrac{1}{7}B-1=\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+\left(-\dfrac{1}{7}\right)^3+...+\left(-\dfrac{1}{7}\right)^{2019}-\left(-\dfrac{1}{7}\right)^0-\left(-\dfrac{1}{7}\right)^1-\left(-\dfrac{1}{7}\right)^2-...-\left(-\dfrac{1}{7}\right)^{2018}\)
\(\Rightarrow-\dfrac{8}{7}B=\left(-\dfrac{1}{7}\right)^{2019}-1\)
\(\Rightarrow B=\left[\left(-\dfrac{1}{7}\right)^{2019}-1\right]:\left(-\dfrac{8}{7}\right)\)
\(B=1-\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}+...-\dfrac{1}{7^{2017}}+\dfrac{1}{7^{2018}}\\ \Rightarrow7B=7-1+\dfrac{1}{7}-\dfrac{1}{7^2}+...-\dfrac{1}{7^{2016}}+\dfrac{1}{7^{2017}}\\ \Rightarrow7B+B=6+\dfrac{1}{7}-\dfrac{1}{7^2}+...+\dfrac{1}{7^{2017}}+1-\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}+...-\dfrac{1}{7^{2017}}+\dfrac{1}{7^{2018}}\\ \Rightarrow8B=7+\dfrac{1}{7^{2018}}=\dfrac{7^{2019}+1}{7^{2018}}\\ \Rightarrow B=\dfrac{7^{2019}+1}{8\cdot7^{2018}}\)
\(\left(8+\dfrac{9}{4}+\dfrac{2}{7}\right)-\left(-6-\dfrac{3}{7}+\dfrac{5}{4}\right)-\left(3+\dfrac{2}{4}-\dfrac{9}{7}\right)\)
\(=8+\dfrac{9}{4}+\dfrac{2}{7}+6+\dfrac{3}{7}-\dfrac{5}{4}-3-\dfrac{2}{4}+\dfrac{9}{7}\)
\(=11+\dfrac{1}{2}+2\)
\(=\dfrac{27}{2}\)
Hoàng Ngọc Anh bài này nè bn giúp mk nha!!! ngày mai mk phải nộp bài rùi =.=
a) \(\Rightarrow\dfrac{\dfrac{7}{2}x+\dfrac{59}{24}}{\dfrac{13}{30}}=\dfrac{137}{52}\)
\(\Rightarrow\left(\dfrac{7}{2}x+\dfrac{59}{24}\right).52=\dfrac{13}{30}.137\)
\(\Rightarrow182x+\dfrac{767}{6}=\dfrac{1781}{30}\)
\(\Rightarrow x=\dfrac{-79}{210}\)
b) Tương tự câu a)
\(1+\dfrac{7}{n\left(n+8\right)}=\dfrac{n^2+8n+7}{n\left(n+8\right)}=\dfrac{\left(n+1\right)\left(n+7\right)}{n\left(n+8\right)}\)
\(\Rightarrow P=\left(1+\dfrac{7}{1.\left(1+8\right)}\right)\left(1+\dfrac{7}{2.\left(2+8\right)}\right)\left(1+\dfrac{7}{3.\left(3+8\right)}\right)...\left(1+\dfrac{7}{50.\left(50+8\right)}\right)\)
\(=\left(\dfrac{2.8}{1.9}\right).\left(\dfrac{3.9}{2.10}\right).\left(\dfrac{4.10}{3.11}\right)...\left(\dfrac{51.57}{50.58}\right)\)
\(=\dfrac{2.3.4...51}{1.2.3...50}.\dfrac{8.9.10...57}{9.10.11...58}=\dfrac{51}{1}.\dfrac{8}{58}=\dfrac{204}{29}\)