Tính tích phân I = ∫ 1 2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

đăng hoài

7 tháng 5 2016

a) 3(x - 2) - 4(2x + 1) - 5(2x + 3) = 50

3x - 6 - 8x - 4 - 10x - 15 = 50

(3x - 8x - 10x) - (6 + 4 + 15) = 50

-15x + 25 = 50

-15x = 50 - 25

-15x = 25

x = 25 : (-15)

x = -5/3

Chúc bạn học tốtok

 

24 tháng 3 2016

a) 2\(\frac{x}{7}\) = \(\frac{75}{35}\)

\(\frac{2.7+x}{7}\) = \(\frac{75:5}{35:5}\) = \(\frac{15}{7}\)

=> 2.7+x = 15

      14+x = 15

            x = 15-14 = 1

              Vậy x=1

b)4\(\frac{3}{x}\) = \(\frac{47}{x}\)

\(\frac{4.x+3}{x}\) \(\frac{47}{x}\)
=> 4.x + 3 = 47

4x= 47-3=44

vậy x= 44:4=11

c)x\(\frac{x}{15}\) = \(\frac{112}{5}\)

x\(\frac{x}{15}\) =\(\frac{112.3}{5.3}\) = \(\frac{336}{15}\)

\(\frac{x.15+x.1}{15}\) = \(\frac{336}{15}\) 

=>(15+1) x =336

       16x    = 336

           x     = 336 : 16

       vậy   x       = 21

20 tháng 3 2016

Thay a,b,c lần lượt vào biểu thức...

Tính được kết quả:

a) A= \(-\frac{7}{10}\)

b) B= \(-\frac{2}{7}\)

c) C= 0

20 tháng 3 2016

a) Thay a= \(-\frac{6}{5}\)vào BT A ta có:

\(\left(-\frac{6}{5}\right).\frac{1}{2}-\left(-\frac{6}{5}\right).\frac{2}{3}+\left(-\frac{6}{5}\right).\frac{3}{4}\)\(-\frac{7}{10}\)

Các bài dưới lần lượt thế thôi bạn

5 tháng 10 2015

ta có:

\(y'=\frac{\left(x+\sqrt{x^2+1}\right)'}{x+\sqrt{x^2+1}}=\frac{1+\frac{x}{\sqrt{x^2+1}}}{x+\sqrt{x^2+1}}=\frac{1+\frac{x}{\sqrt{x^2+1}}}{x+\sqrt{x^2+1}}=\frac{\frac{x+\sqrt{x^2+1}}{\sqrt{x^2+1}}}{x+\sqrt{x^2+1}}=\frac{1}{\sqrt{x^2+1}}\)

2) Ta có:

\(B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=x^4+x^3y-2x^3+x^3y+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[x\left(x+y\right)-2x\right]+3\)

Do \(x+y-2=0\Rightarrow x+y=2\)

\(\Rightarrow B=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[2x-2x\right]+3\)

\(=x^3.\left(x+y-2\right)+x^2y\left(x+y-2\right)-0+3\)

\(=0+0+3\)

\(=3\)

Vậy \(B=3\)

1) Ta có:

\(A=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x-1\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(=0+0+0+1\)

\(=1\)

Vậy \(A=1\)

5 tháng 10 2015

ta có:

\(y'=\frac{\left(\frac{1-x^2}{1+x^2}\right)'}{\frac{1-x^2}{1+x^2}}=\frac{\frac{-2x.\left(1+x^2\right)-2x.\left(1-x^2\right)}{\left(1+x^2\right)^2}}{\frac{1-x^2}{1+x^2}}=\frac{\frac{-4x}{\left(1+x^2\right)^2}}{\frac{1-x^2}{1+x^2}}=\frac{-4x}{\left(1+x^2\right)\left(1-x^2\right)}=\frac{-4x}{1-x^4}\)

11 tháng 4 2016

Câu 1.   

a).  2A = 8 + 2 3 + 2 4 + . . . + 2 21.

=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20).  = 2 21.

     

b).          (x + 1) + ( x + 2 ) + . . .  . . . . . + (x + 100)  = 5750

=>             x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100     =  5750

=>   ( 1 + 2 + 3 + . .  . + 100) + ( x + x + x . . . . . . . + x )   =  5750

=>             101 . 50              +                100 x                          = 5750

                                                         100 x + 5050      =  5750

                                                         100 x     = 5750 – 5050

                                                         100 x     =  700

                                                                x     =  7

                   

 

 

 

 

                   101 . 50              +                100 x                          = 5750

                                                         100 x + 5050      =  5750

                                                         100 x     = 5750 – 5050

                                                         100 x     =  700

                                                                x     =  7

12 tháng 4 2016

Câu 1.   a).  2A = 8 + 2 3 + 2 4 + . . . + 2 21.

=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20).  = 2 21.

       b).          (x + 1) + ( x + 2 ) + . . .  . . . . . + (x + 100)  = 5750

=>             x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100     =  5750

=>   ( 1 + 2 + 3 + . .  . + 100) + ( x + x + x . . . . . . . + x )   =  5750

=>                101 . 50              +                  100 x                 = 5750

                                                         100 x + 5050      =  5750

                                                         100 x     = 5750 – 5050

                                                         100 x     =  700

                                                                x     =  7

18 tháng 1 2016

a)

\(\frac{1}{x^2+x+1}dx=\frac{1}{\left(x-\frac{1}{4}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}dx\)

Đặt

\(\left(x-\frac{1}{4}\right)=\frac{\sqrt{3}}{2}tant\) => dx=\(\frac{\sqrt{3}}{2}\left(1+tan^2t\right)dt\) =>\(\frac{1}{x^2+x+1}dx=\frac{1}{\frac{3}{4}\left(1+tan^2t\right)+\frac{3}{4}}\left(1+tan^2t\right)dt=\frac{3}{4}dt=\frac{3}{4}t+C\) 

Với \(\left(x-\frac{1}{4}\right)=\frac{\sqrt{3}}{2}tant=>t=\left(\frac{2\sqrt{3}}{4x-1}\right)\)

18 tháng 1 2016

Câu b nhá :

\(\frac{1}{x^2+2x+2}dx=\frac{1}{\left(x+1\right)^2+\left(\sqrt{2^2}\right)}dx\)

Đặt

 \(x+1=\sqrt{2}tant=>dx=\sqrt{2}\left(1+tan^2t\right)dt\)

=> \(\frac{1}{x^2+2x+3}dx=\frac{1}{2\left(tan^2t+1\right)}.\left(1+tan^2t\right)dt=\frac{1}{2}dt=\frac{1}{2}t+C\)

Với

\(x+1=\sqrt{2}tant=>tant=\frac{x+1}{\sqrt{2}}<=>t=arctan\left(\frac{x+1}{\sqrt{2}}\right)\)

26 tháng 2 2016

a) \(4x-7>0\Leftrightarrow4x>7\)\(\Leftrightarrow x>\frac{7}{4}\)

b) \(-5x+8>0\Leftrightarrow5x<8\Leftrightarrow x<\frac{8}{5}\)

c)\(9x-10\le0\Leftrightarrow9x\le10\)\(\Leftrightarrow x\le\frac{10}{9}\)

d) \(\left(x+1\right)^2+4\le x^2+3x+10\)\(\Leftrightarrow x^2-2x+1+4\le x^2+3x+10\)

                                           \(\Leftrightarrow5x\ge-5\Leftrightarrow x\ge-1\)

14 tháng 5 2018

a,

4x - 7 > 0

↔ 4x > 7

↔ x > \(\dfrac{7}{4}\)

Vậy tập nghiệm của bất phương trình là S = { x / x>\(\dfrac{7}{4}\) }

b,

-5x + 8 > 0

↔ 8 > 5x

\(\dfrac{8}{5}\) > x

Vậy tập nghiệm của bất phương trình là S = { x / \(\dfrac{8}{5}\) > x }

c,

9x - 10 ≤ 0

↔ 9x ≤ 10

↔ x ≤ \(\dfrac{10}{9}\)

Vậy tập nghiệm của bất phương trình là S = { x / x ≤ \(\dfrac{10}{9}\) }

d,

( x - 1 )\(^2\) + 4 ≤ x\(^2\) + 3x + 10

↔ x\(^2\) - 2x +1 +4 ≤ x\(^2\) + 3x + 10

↔ 1 + 4 - 10 ≤ x \(^2\) - x\(^2\) + 3x + 2x

↔ -5 ≤ 5x

↔ -1 ≤ x

Vậy tập nghiệm của bất phương trình là S = { x / -1 ≤ x}

15 tháng 3 2016

B= \(\frac{1}{199}\) + \(\frac{2}{198}\) + ... + \(\frac{198}{2}\) + \(\frac{199}{1}\)

B= ( \(\frac{1}{199}\) + 1) + ( \(\frac{2}{198}\) +1) +...+ ( \(\frac{198}{2}\) +1) +1 ( Mình tách 199 ra thành 199 số hạng rồi cộng thêm vào mỗi phân số)

B= \(\frac{200}{199}\) + \(\frac{200}{198}\) + \(\frac{200}{197}\) +...+\(\frac{200}{2}\)

B= 200( \(\frac{1}{199}\) + \(\frac{1}{198}\) +...+ \(\frac{1}{2}\) ) 

B= 200 ( \(\frac{1}{2}\) + \(\frac{1}{3}\) +...+ \(\frac{1}{198}\) + \(\frac{1}{199}\) ) = 200 A

Ta thấy A=1A, B=200A Suy ra \(\frac{A}{B}\) = \(\frac{1}{200}\)

 

15 tháng 3 2016

Giúp mình đi. Mai phải nộp bài rồi khocroi