Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a1sinx+b1cosx=A(a2sinx+b2cosx)+B(a2cosx-b2sinx) roi the vo ,do la dung dong nhat thuc
Ta thực hiện theo các bước sau :
Bước 1 : Biến đổi
\(a_1\sin x+b_1\cos x+c_1=A\left(a_2\sin x+b_2\cos x+c_2\right)+B\left(a_2\cos x+b_2\sin x\right)+C\)
Bước 2 : Khi đó :
\(I=\int\frac{A\left(a_2\sin x+b_2\cos x+c_2\right)+B\left(a_2\cos x+b_2\sin x\right)+C}{_2\sin x+b_2\cos x+c_2}\)
\(=A\int dx+B\int\frac{\left(a_2\cos_{ }x-b_2\sin x_{ }\right)dx}{_{ }a_2\sin x+b_2\cos x+c_2}+C\int\frac{dx}{a_2\sin x+b_2\cos x+c_2}\)
\(=Ax+B\ln\left|a_2\sin x+b_2\cos x+c_2\right|+C\int\frac{dx}{a_2\sin x+b_2\cos x+c_2}\)
Trong đó :
\(\int\frac{dx}{a_2\sin x+b_2\cos x+c_2}\)
Ta có :
\(I=\int\frac{dx}{\left(3\tan^2x-2\tan x-1\right)\cos^2x}=\int\frac{d\left(\tan x\right)}{3\tan^2x-2\tan x-1}\)
Đặt \(t=\tan x\Rightarrow I=\int\frac{dt}{3t^2-2t-1}=\frac{1}{3}.\frac{1}{t+\frac{1}{3}}\int\left(\frac{1}{t-1}-\frac{1}{t+\frac{1}{3}}\right)dt\)
= \(\frac{1}{4}\ln\left|\frac{t-1}{t+\frac{1}{3}}\right|=\frac{1}{4}\ln\left|\frac{3t-3}{3t +3}\right|+C\)
Thay trả lại :
\(t=\tan x\Rightarrow I=\frac{1}{4}\ln\left|\frac{3\tan x-3}{3\tan x+1}\right|+C\)
Thực hiện theo các bước sau :
Bước 1 : Biến đổi :
\(a_1\sin x+b_1\cos x=A\left(a_2\sin x+b_2\cos x\right)+B\left(a_2\cos x-b_2\sin x\right)\)
Bước 2 : Khi đó :
\(I=\int\frac{A\left(a_2\sin x+b_2\cos x\right)+B\left(a_2\cos x-b_2\sin x\right)}{\left(a_2\sin x+b_2\cos x\right)^2}dx=A\int\frac{dx}{a_2\cos x+b_2\sin x}+B\int\frac{\left(a_2\cos x+b_2\sin x\right)dx}{\left(a_2\cos x+b_2\sin x\right)^2}\)
\(=\frac{A}{\sqrt{a^2_2+b^2_2}}\int\frac{dx}{\sin\left(x+\alpha\right)}-B\int\frac{1}{a_2\sin x+b_2\cos x}dx=\frac{A}{\sqrt{a^2_2+b^2_2}}\ln\left|\tan\left(\frac{x+\alpha}{2}\right)\right|-\frac{B}{a_2\cos x+b_2\sin x}+C\)
Trong đó : \(\sin\alpha=\frac{b_2}{\sqrt{a^2_2+b^2_2}_{ }};\cos\alpha=\frac{a_2}{\sqrt{a^2_2+b^2_2}}\)
Ta thực hiện theo các bước sau :
Bước 1 : Biến đổi
\(a_1\sin^2x+b_1\sin x\cos x+c_1\cos^2x=\left(A\sin x+B\cos x\right)\left(a_2\sin x+b_2\cos x\right)+C\left(\sin^2x+\cos^2x\right)\)
Bước 2 : Khi đó :
\(I=\int\frac{\left(A\sin x+B\cos x\right)\left(a_2\sin x+b_2\cos x\right)+C\left(\sin^2x+\cos^2x\right)}{a_2\sin x+b_2\cos x}\)
\(=\int\left(A\sin x+B\cos x\right)+C\int\frac{dx}{a_2\sin x+b_2\cos x}\)
= \(-A\cos x+B\sin x+\sqrt{\frac{C}{a^2_a+b_2^2}}\int\frac{dx}{\sin\left(x+\alpha\right)}\)
=\(-A\cos x+B\sin x+\frac{C}{\sqrt{a_2^2+b^2_2}}\ln\left|\tan\frac{x+\alpha}{2}\right|+C\)
Trong đó :
\(\sin\alpha=\frac{b_2}{\sqrt{a_2^2}+b^{2_{ }}_2};\cos\alpha=\frac{a_2}{\sqrt{a_2^2}+b^{2_{ }}_2}\)
a) \(\sin^4x=\left(\sin^2x\right)^2=\left(\dfrac{1-\cos2x}{2}\right)^2\)
\(=\dfrac{1}{4}\left(1-2\cos2x+\cos^22x\right)\)
\(=\dfrac{1}{4}\left(1-2.\cos2x+\dfrac{1+\cos4x}{2}\right)\)
\(=\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\)
Vậy:
\(\int\sin^4x\text{dx}=\int\left(\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\right)\text{dx}\)
\(=\dfrac{3}{8}x-\dfrac{1}{4}\sin2x+\dfrac{1}{32}\sin4x+C\)
a) Đặt \(x=\sin t;t\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\) \(\Rightarrow dx=\cos tdt\)
Suy ra : \(\frac{dx}{\sqrt{\left(1-x^2\right)^3}}=\frac{\cos tdt}{\sqrt{\left(1-\sin^2t\right)^3}}=\frac{\cos tdt}{\cos^3t}=\frac{dt}{\cos^2t}=d\left(\tan t\right)\)
Khi đó \(\int\frac{dx}{\sqrt{\left(1-x^2\right)^3}}=\int d\left(\tan t\right)=\tan t+C=\frac{\sin t}{\sqrt{1-\sin^2t}}=\frac{x}{\sqrt{1-x^2}}+C\)
b) Vì \(x^2+2x+3=\left(x+1\right)^2+\left(\sqrt{2}\right)^2\)
nên ta đặt : \(x+1=\sqrt{2}\tan t;t\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow dx=\sqrt{2}.\frac{dt}{\cos^2t};\tan t=\frac{x+1}{\sqrt{2}}\)
Suy ra \(\frac{dx}{\sqrt{x^2+2x+3}}=\frac{dx}{\sqrt{\left(x^2+1\right)^2+\left(\sqrt{2}\right)^2}}=\frac{dx}{\sqrt{2\left(\tan^2t+1\right).\cos^2t}}\)
\(=\frac{dt}{\sqrt{2}\cos t}=\frac{1}{\sqrt{2}}.\frac{\cos tdt}{1-\sin^2t}=-\frac{1}{2\sqrt{2}}.\left(\frac{\cos tdt}{\sin t-1}-\frac{\cos tdt}{\sin t+1}\right)\)
Khi đó \(\int\frac{dx}{\sqrt{x^2+2x+3}}=-\frac{1}{2\sqrt{2}}\int\left(\frac{\cos tdt}{\sin t-1}-\frac{\cos tdt}{\sin t+1}\right)=-\frac{1}{2\sqrt{2}}\ln\left|\frac{\sin t-1}{\sin t+1}\right|+C\left(1\right)\)
Từ \(\tan t=\frac{x+1}{\sqrt{2}}\Leftrightarrow\tan^2t=\frac{\sin^2t}{1-\sin^2t}=\frac{\left(x+1\right)^2}{2}\Rightarrow\sin^2t=1-\frac{2}{x^2+2x+3}\)
Ta tìm được \(\sin t\) thay vào (1), ta tính được I
Để tìm một số nguyên hàm ta có thể lưu ý và áp dụng nhận xetsau : nguyên hàm của một phân thức mà tử số của nó là vi phân của mẫu số là bằng logarit của đại lượng tuyệt đối của mẫu số :
\(\int\frac{u'dx}{u}=\int\frac{du}{u}=\ln\left|u\right|+C\)
a) \(\int\frac{\cos2x}{\sin x\cos x}dx=2\int\frac{\cos2x}{\sin2x}dx=\int\frac{d\left(\sin2x\right)}{\sin2x}=\ln\left|\sin2x\right|+C\)
b)\(\int\frac{e^{2x}}{1-3e^{2x}}dx=-\frac{1}{6}\int\frac{-6e^{2x}}{1-3e^{2x}}dx=-\frac{1}{6}\int\frac{d\left(1-3e^{2x}\right)}{1-3e^{2x}}=-\frac{1}{6}\ln\left|1-3e^{2x}\right|+C\)
c)\(\int\frac{2x-5}{x^2-5x+7}dx=\int\frac{d\left(x^2-5x+7\right)}{x^2-5x+7}=\ln\left|x^2-5x+7\right|+C\)
\(=\ln\left(x^2-5x+7\right)+C\)
d)\(\int\frac{xdx}{x^2+1}=\frac{1}{2}\int\frac{2xdx}{x^2+1}=\frac{1}{2}\int\frac{d\left(x^2+1\right)}{x^2+1}=\frac{1}{2}\ln\left(x^2+1\right)+C\)
e) \(\int\frac{dx}{\sin x}=\int\frac{\sin xdx}{\sin^2x}=\int\frac{d\left(\cos x\right)}{\cos^2x-1}=\frac{1}{2}\ln\frac{1-\cos x}{1+\cos x}+C\)
\(I=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{\cos2x+3\cos x+2}dx=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{2\cos^2x+3\cos x+1}dx\)
Đặt \(\cos x=t\Rightarrow dt=-\sin dx\)
Với \(x=0\Rightarrow t=1\)
Với \(x=\frac{\pi}{2}\Rightarrow t=0\)
\(I=\int\limits^1_0\frac{dt}{2t^2+3t+1}=\int\limits^1_0\frac{dt}{\left(2t+1\right)\left(t+1\right)}=2\int\limits^1_0\left(\frac{1}{2t+1}+\frac{1}{2t+1}\right)dt\)
\(=\left(\ln\frac{2t+1}{2t+1}\right)|^1_0=\ln\frac{3}{2}\)
\(I=\frac{1}{\sqrt{a^2+b^2}}\int\frac{dx}{\sin\left(x+\alpha\right)}=\frac{1}{\sqrt{a^2+b^2}}\int\frac{dx}{2\sin\frac{x+\alpha}{2}.\cos\frac{x+\alpha}{2}}=\frac{1}{\sqrt{a^2+b^2}}\int\frac{dx}{2\tan\frac{x+\alpha}{2}.\cos^2\frac{x+\alpha}{2}}\)
\(\Rightarrow\frac{1}{\sqrt{a^2+b^2}}\int\frac{d\left(\tan\frac{x+\alpha}{2}\right)}{\tan\frac{x+\alpha}{2}}=\frac{1}{\sqrt{a^2+b^2}}\ln\left|\tan\frac{x+\alpha}{2}\right|+C\)
chịu