Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`-0,5x^2yz*(-3xy^3z)`
`= [(-0,5)*(-3)]*(x^2*x)*(y*y^3)*(z*z)`
`= 1,5x^3y^4z^2`
Hệ số: `1,5`
Bậc: `3+4+2 = 9`
`@` `\text {Kaizuu lv u}`
\(B=9\cdot\left(-x\right)^3\cdot y^3\cdot4x^4y^2z^2=-36x^7y^5z^2\)
Hệ số là -36
Phần biến là \(x^7;y^5;z^2\)
bậc là 14
1.
Tại x = -1, có :
2.(-1)2 - 5.(-1) + 2
= 2.1 + 5 + 2
= 9
Tại x = \(\dfrac{1}{2}\), có :
\(2.\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}+2\)
= \(2.\dfrac{1}{4}-2,5+2\)
= 0,5 - 2,5 + 2
= 0
2.
\(\dfrac{1}{2}xy^2.\left(-3xyz\right).2x^2z\)
= -3x4y3z2
- Hệ số : -3
- Bậc : 9
A)
\(\frac{1}{4}xy^3.-2x^2yz^2=\frac{-1}{2}x^3y^4z^2\)
hệ số :\(\frac{-1}{2}\), bậc :4
B)
\(-2x^2yz\cdot-3xy^3z=6x^3y^4z^2\)
bậc 4 , hệ số :6
Giải:
a) \(2x^2yz\left(-3xy^3z\right)=-6x^3y^4z^2\)
Bậc của đơn thức: \(3+4+2=9\)
b) \(\left(-12xyz\right)\left(\dfrac{-4}{3}x^2yz^3\right)y=16x^3y^3z^4\)
Bậc của đơn thức: \(3+3+4=10\)
c) \(-2x^2y\left(-3xy^2\right)^3=-2x^2y\left(-27x^3y^6\right)=54x^5y^7\)
Bậc của đơn thức: \(5+7=12\)
d) \(12\dfrac{1}{2}x^4\left(-\dfrac{2}{5}x^3y\right)^2=6x^4\left(\dfrac{4}{25}x^6y^2\right)=\dfrac{24}{25}x^{10}y^2\)
Bậc của đơn thức: \(10+2=12\)
\(a,2x^2yz\left(-3xy^3z\right)=-6x^3y^4z^2\)
Bậc của đơn thức là 9
\(b,\left(-12xyz\right)\left(-\dfrac{4}{3}x^2yz^3\right)y=16x^3y^3z^4\)
Bậc của đơn thức: 10
\(c,-2x^2y\left(-3xy^2\right)^3\)
\(-2x^2y.\left(-27\right)x^3y^6=54x^5y^7\)
Bậc của đơn thức: 12
\(d,12\dfrac{1}{2}x^4\left(-\dfrac{2}{5}x^3y\right)^2\)
\(=12\dfrac{1}{2}x^4\cdot\dfrac{4}{25}x^6y^2=2x^{10}y^2\)
Bậc của đơn thức : 12
a) 6xy.2x3yz2=(6.2).(x.x3).(y.y).z2=12x4.y2.z2
=> Hệ số: 12; Phần biến: x4y2z2; Bậc đơn thức: 8
b) 12x3y2.(-3/4 xy2)= [12.(-3/4)]. (x3.x).(y2.y2)= -9.x4.y4
=> Hệ số: -9; Phần biến: x4.y4; Bậc đơn thức: 8
c)
\(\dfrac{1}{5}x^3y.\left(-5x^4yz^3\right)=\left[\dfrac{1}{5}.\left(-5\right)\right].\left(x^3.x^4\right).\left(y.y\right).z^3\\ =-x^7y^2z^3\)
=> Hệ số: -1; Phần biến: x7y2z3; Bậc đơn thức: 12
d) \(-\dfrac{3}{8}x^3y^2z.\left(4x^2yz\right)^3=\left[-\dfrac{3}{8}.4^2\right].\left(x^3.x^{2.3}\right).\left(y^2.y\right).\left(z.z^3\right)=-6.x^9y^3z^4\)
=> Hệ số: -6; Phần biến: x9y3z4; Bậc đơn thức: 16
a) Tích của 14xy314xy3 và −2x2yz2−2x2yz2 là:
14xy3.(−2x2yz2)=−12x3y4z214xy3.(−2x2yz2)=−12x3y4z2
Đơn thức tích có hệ số là −12−12 ; có bậc 9.
b) Tích của −2x2yz−2x2yz và −3xy3z−3xy3z là:
−2x2yz.(−3xy3z)=6x3y4z2−2x2yz.(−3xy3z)=6x3y4z2
Đơn thức có hệ số là 6; có bậc 9.
a) \(\dfrac{1}{4}xy^3.\left(-2\right)x^2yz^2\)
= \(\left[\dfrac{1}{4}.\left(-2\right)\right].\left(x.x^2\right).\left(y^3.y\right).z^2\)
= \(\dfrac{-1}{2}x^3y^4z^2\).
Đơn thức trên có hệ số là \(\dfrac{-1}{2}\) và bậc là 9.
b) \(-2x^2yz.\left(-3\right)xy^3z\)
= \(\left[\left(-2\right).\left(-3\right)\right].\left(x^2.x\right).\left(y.y^3\right).\left(z.z\right)\)
= 6x\(^3y^4z^2\).
Đơn thức trên có hệ số là 6 và bậc là 9.