Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)
\(-\dfrac{5}{9}\cdot\dfrac{12}{35}=\dfrac{\left(-5\right)\cdot12}{9\cdot35}=\dfrac{-60}{315}=-\dfrac{4}{21}\)
\(b.\)
\(\left(-\dfrac{5}{8}\right)\cdot-\dfrac{6}{55}=\dfrac{\left(-5\right)\cdot\left(-6\right)}{8\cdot55}=\dfrac{30}{440}=\dfrac{3}{44}\)
\(c.\)
\(\left(-7\right)\cdot\dfrac{2}{5}=-\dfrac{14}{5}\)
\(d.\)
\(-\dfrac{3}{8}\cdot\left(-6\right)=\dfrac{-3\cdot\left(-6\right)}{8}=\dfrac{18}{8}=\dfrac{9}{4}\)
\(T=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{1}{7}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{8}\right)\left(1-\dfrac{1}{10}\right)\)\(\Rightarrow T=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}.\dfrac{8}{9}.\dfrac{10}{11}.\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.\dfrac{7}{8}.\dfrac{9}{10}\)
\(\Rightarrow=\dfrac{1}{11}\)
\(\Rightarrow\) Số nghịch đảo của T là \(11\)
d)
\(\dfrac{3^9.3^{20}.2^8}{3^{24}.243.2^6}\\ =\dfrac{3^{29}.2^6.2^2}{3^{24}.3^5.2^6}\\ =\dfrac{3^{29}.2^6.4}{3^{29}.2^6}\\ =4\)
e)
\(\dfrac{2^{15}.5^3.2^6.3^4}{8.2^{18}.81.5}\\ =\dfrac{2^{21}.5^3.3^4}{2^3.2^{18}3^4.5}\\ =\dfrac{2^{21}.5.5^2.3^4}{2^{21}.3^4.5}\\ =5^2\\ =25\)
f)
\(=\dfrac{24\left(315+561+124\right)}{\dfrac{\left(1+99\right).50}{2}-500}\\ =\dfrac{24.1000}{2500-500}\\ =12\)
\(a,\dfrac{-14.15}{21.\left(-10\right)}=\dfrac{-7.2.3.5}{7.3.\left(-2\right).5}=1\)
\(b,\dfrac{5.7-7.9}{7.2+6.7}=\dfrac{7\left(5-9\right)}{7\left(2+6\right)}=\dfrac{-4}{8}=-\dfrac{1}{2}\)
\(c,\dfrac{\left(-7\right).3+2.\left(-14\right)}{\left(-5\right).7-2.7}=\dfrac{-7.\left(3+4\right)}{7\left(-5-2\right)}\)
\(=\dfrac{\left(-7\right).7}{7.\left(-7\right)}=1\)
\(d,\dfrac{3^9.3^{20}.2^8}{3^{24}.243.2^6}=\dfrac{3^{29}.2^8}{3^{24}.3^5.2^6}=\dfrac{3^{29}.2^8}{3^{29}.2^6}=2^2=4\)
\(e,\dfrac{2^{15}.5^3.2^6.3^4}{8.2^{18}.81.5}=\dfrac{2^{21}.3^4.5^3}{2^{18}.2^3.3^4.5}=\dfrac{2^{21}.3^4.5^3}{2^{21}.3^4.5}=5^2=25\)
\(f,\dfrac{24.315+3.561.8+4.124.6}{1+3+5+...+97+99-500}\)
\(=\dfrac{24.315+24.561+24.124}{1+3+5+...+97+99-500}\)
\(=\dfrac{24\left(315+561+124\right)}{1+3+5+...+97+99-500}\)
\(=\dfrac{24.1000}{1+3+5+...+97+99-500}\) (1)
Đặt A = 1 + 3 + 5 + ... + 97 + 99
Số số hạng trong A là: (99 - 1) : 2 + 1 = 50 (số)
Tổng A bằng: (99 + 1) . 50 : 2 = 2500
Thay A = 2500 vào biểu thức (1), ta được:
\(\dfrac{24.1000}{2500-500}=\dfrac{24.1000}{2.1000}=12\)
=\(\left[\dfrac{\left(0,4.2\right)^5}{\left(0,4\right)^6}+\dfrac{2^9.2^6.3^8}{\left(3.2\right)^6.2^9}\right]=\left[\dfrac{\left(0,4\right)^5.2^5}{\left(0,4\right)^6}+\dfrac{2^6.3^8}{3^6.2^6}\right]\)
=\(\left[\dfrac{2^5}{0,4}+3^2\right]\)
=\(\left[80+9\right]=89\)
\(\left[\dfrac{\left(2.0,4\right)^5}{0,4,0,4^5}+\dfrac{2^{15}.3^8}{3^6.2^6.2^9}\right]\div\dfrac{3^{20}.5^{30}}{3^{15}.5^{30}}\)
\(=\left[\dfrac{2^5.0.4^5}{0,4.0,4^5}+\dfrac{2^{15}.3^8}{3^6.2^{15}}\right]\div3^5\)
\(=\left[\dfrac{2^5}{0,4}+3^2\right]\div243\)
\(=80+\left(3^5\div3^2\right)\)
\(=80+3^3\)
\(=80+27\)
\(=107\)
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)
a: \(\left(\dfrac{4}{9}+\dfrac{1}{3}\right)^2=\dfrac{49}{81}\)
b: \(\left(\dfrac{1}{2}-\dfrac{3}{5}\right)^3=-\dfrac{1}{1000}\)
c: \(\left(-\dfrac{10}{3}\right)^5\cdot\left(-\dfrac{6}{4}\right)^4=-\dfrac{6250}{3}\)
d: \(\left(\dfrac{3}{4}\right)^3:\left(\dfrac{3}{4}\right)^2:\left(-\dfrac{3}{2}\right)^3=-\dfrac{2}{9}\)
Bài 1:
\(a,\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2-\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\)
\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(\dfrac{24+2-3}{12}\right)=\dfrac{7}{46}\)
\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\dfrac{23}{12}=\dfrac{7}{46}\)
\(x+\dfrac{1}{4}-\dfrac{1}{3}=\dfrac{7}{46}.\dfrac{23}{12}\)
\(x+\dfrac{1}{4}-\dfrac{1}{3}=\dfrac{7}{24}\)
\(x+\dfrac{1}{4}=\dfrac{7}{24}+\dfrac{1}{3}\)
\(x+\dfrac{1}{4}=\dfrac{5}{8}\)
\(x=\dfrac{5}{8}-\dfrac{1}{4}=\dfrac{3}{8}\)
Vậy \(x=\dfrac{3}{8}\)
\(b,\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right).\dfrac{7}{12}=\dfrac{7}{10}\)
\(\left(\dfrac{13}{21}+x\right).\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\)
\(\left(\dfrac{13}{21}+x\right).\dfrac{7}{12}=\dfrac{1}{6}\)
\(\dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\)
\(\dfrac{13}{21}+x=\dfrac{2}{7}\)
\(x=\dfrac{2}{7}-\dfrac{13}{21}=-\dfrac{1}{3}\)
Vậy \(x=-\dfrac{1}{3}\)
Bài 2:
\(a,\left(2\dfrac{5}{6}+1\dfrac{4}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{1}{2}\right)\)
\(=\left(\dfrac{17}{6}+\dfrac{13}{9}\right):\left(\dfrac{121}{12}-\dfrac{19}{2}\right)\)
\(=\dfrac{77}{18}:\dfrac{7}{12}\)
\(=\dfrac{22}{3}\)
\(b,1\dfrac{5}{18}-\dfrac{5}{18}.\left(\dfrac{1}{15}+1\dfrac{1}{12}\right)\)
\(=\dfrac{23}{18}-\dfrac{5}{18}.\dfrac{69}{60}\)
\(=\dfrac{23}{18}-\dfrac{23}{72}\)
\(=\dfrac{23}{24}\)
\(c,-\dfrac{1}{7}.\left(9\dfrac{1}{2}-8,75\right):\dfrac{2}{7}+0,625:1\dfrac{2}{3}\)
\(=\dfrac{-1}{7}.\dfrac{3}{4}:\dfrac{2}{7}+\dfrac{5}{8}:\dfrac{5}{3}\)
\(=-\dfrac{3}{8}+\dfrac{5}{8}:\dfrac{5}{3}\)
\(=-\dfrac{3}{8}+\dfrac{3}{8}\)
\(=\dfrac{0}{8}=0\)
Chúc bạn học tốt
ukm
bn có thể giải cho mik mấy bài mà mik vừa đăng đc ko mik đang cần gấp
a) Ta có: \(\dfrac{-5}{18}+\dfrac{32}{45}-\dfrac{9}{10}\)
\(=\dfrac{-25}{90}+\dfrac{64}{90}-\dfrac{81}{90}\)
\(=\dfrac{-42}{90}=-\dfrac{7}{15}\)
b) Ta có: \(\left(-\dfrac{1}{4}+\dfrac{51}{33}-\dfrac{5}{3}\right)-\left(-\dfrac{15}{12}+\dfrac{6}{11}-\dfrac{42}{29}\right)\)
\(=\dfrac{-1}{4}+\dfrac{17}{11}-\dfrac{5}{3}+\dfrac{5}{4}-\dfrac{6}{11}+\dfrac{42}{29}\)
\(=\dfrac{-5}{3}+\dfrac{42}{29}\)
\(=\dfrac{-145}{87}+\dfrac{126}{87}=\dfrac{-19}{87}\)
c) Ta có: \(1-\dfrac{1}{2}+2-\dfrac{2}{3}+3-\dfrac{3}{4}+4-\dfrac{1}{4}-3-\dfrac{1}{3}-2-\dfrac{1}{2}-1\)
\(=\left(1-1\right)-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(2-2\right)-\left(\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(3-3\right)-\left(\dfrac{3}{4}+\dfrac{1}{4}\right)+4\)
\(=-1-1-1+4\)
=1
a) Ta có: −518+3245−910−518+3245−910
=−2590+6490−8190=−2590+6490−8190
=−4290=−715=−4290=−715
b) Ta có: (−14+5133−53)−(−1512+611−4229)(−14+5133−53)−(−1512+611−4229)
=−14+1711−53+54−611+4229=−14+1711−53+54−611+4229
=−53+4229=−53+4229
=−14587+12687=−1987=−14587+12687=−1987
c) Ta có: 1−12+2−23+3−34+4−14−3−13−2−12−11−12+2−23+3−34+4−14−3−13−2−12−1
=(1−1)−(12+12)+(2−2)−(23+13)+(3−3)−(34+14)+4=(1−1)−(12+12)+(2−2)−(23+13)+(3−3)−(34+14)+4
=−1−1−1+4=−1−1−1+4
=1
\(a.\)
\(\dfrac{3}{10}:\left(-\dfrac{2}{3}\right)=\dfrac{3}{10}\cdot\dfrac{-3}{2}=-\dfrac{9}{20}\)
\(b.\)
\(\left(-\dfrac{7}{12}\right):\left(-\dfrac{5}{6}\right)=\left(-\dfrac{7}{12}\right)\cdot\left(-\dfrac{6}{5}\right)=\dfrac{\left(-7\right)\cdot\left(-6\right)}{12\cdot5}=\dfrac{7}{10}\)
\(c.\)
\(\left(-15\right):-\dfrac{9}{10}=\left(-15\right)\cdot-\dfrac{10}{9}=\dfrac{150}{9}=\dfrac{50}{3}\)
a) \(\dfrac{3}{10}:\dfrac{-2}{3}=\dfrac{3}{10}.\dfrac{-3}{2}=\dfrac{3.-3}{10.2}=\dfrac{-9}{20}\)
b) \(\dfrac{-7}{12}:\dfrac{-5}{6}=\dfrac{-7}{12}.\dfrac{-6}{5}=\dfrac{-7.-6}{12.5}=\dfrac{7}{10}\)
c)\(-15:\dfrac{-9}{10}=-15.\dfrac{-10}{9}=\dfrac{-15.-10}{9}=\dfrac{50}{3}\)