Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 38/25+9/10-11/15+13/21-15/28+17/36-...+197/4851-199/4950
Ta có thể viết lại : (9/20-11/15)+(13/21-15/28)+17/36-19/45...+(197/4851-199/4950)
Ta thấy:(9/10-11/15)=1/6=1/2x3=1/2-1/3
(13/21-15/28)=1/12=1/3x4=1/3-1/4
(17/36-19/45)=1/20=1/4x5=1/4-1/5
............................
Ta được:9/10-11/15+13/21-15/28+17/36-19/45...+197/4851-199/4950=1/2-1/3+1/3-1/4+1/4-1/5=24/50
Vậy:A= 38/25+24/50
A=2
\(S=\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+\cdot\cdot\cdot+\frac{197}{4851}-\frac{199}{4950}\)
\(\Rightarrow S=\frac{38}{25}+\frac{18}{20}-\frac{22}{30}+\cdot\cdot\cdot+\frac{394}{9702}-\frac{398}{9900}\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{9}{20}-\frac{11}{30}+\cdot\cdot\cdot+\frac{197}{9702}-\frac{199}{9900}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{9}{4\cdot5}-\frac{11}{5\cdot6}+\cdot\cdot\cdot+\frac{197}{98\cdot99}-\frac{199}{99\cdot100}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{5}-\frac{1}{6}+\cdot\cdot\cdot-\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{1}{4}-\frac{1}{100}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{25}{100}-\frac{1}{100}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\frac{24}{100}\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\frac{6}{25}\)
\(\Rightarrow S=\frac{38}{25}+\frac{12}{25}\)
\(\Rightarrow S=\frac{50}{25}=2\)
\(A=\frac{88}{25}-2\left(\frac{9}{20}-\frac{11}{30}+\frac{13}{42}-.....-\frac{199}{9900}\right)\)
\(A=\frac{88}{25}-2\left(\frac{4+5}{4.5}-\frac{5+6}{5.6}+....-\frac{99+100}{99.100}\right)\)
\(A=\frac{88}{25}-2\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{5}-\frac{1}{6}+\frac{1}{6}+....-\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{88}{25}-2\left(\frac{1}{4}-\frac{1}{100}\right)=\frac{88}{25}-\frac{1}{2}+\frac{1}{50}=\frac{176-25+1}{50}=\frac{152}{50}=\frac{76}{25}\)
\(A=\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+...+\frac{197}{4851}-\frac{199}{4950}\)
\(\frac{1}{2}.A=\frac{19}{25}+\frac{9}{20}-\frac{11}{30}+...+\frac{197}{97.99}-\frac{199}{99.100}\)
\(\frac{1}{2}.A=\frac{19}{25}+\frac{9}{4.5}-\frac{11}{5.6}+...+\frac{197}{98.99}-\frac{199}{99.100}\)
\(\frac{1}{2}.A=\frac{19}{25}+\frac{1}{4}+\frac{1}{5}-\left(\frac{1}{5}+\frac{1}{6}\right)+...+\left(\frac{1}{89}+\frac{1}{99}\right)-\left(\frac{1}{99}+\frac{1}{100}\right)\)
\(\frac{1}{2}.A=\frac{19}{25}+\frac{1}{4}-\frac{1}{100}\)
\(\frac{1}{2}.A=\frac{76}{100}+\frac{25}{100}-\frac{1}{100}\)
\(\frac{1}{2}.A=1\)
\(A=1:\frac{1}{2}\)
\(A=2\)