\(\sqrt{9-4\sqrt{5}}-\sqrt{9+\sqrt{80}}\)

b, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

a/ C1:

\(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}-\sqrt{5+4\sqrt{5}+4}\)

\(=\sqrt{5}-2-\sqrt{5}-2=-4\)

C2: 

\(A=\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(\Leftrightarrow A^2=18-2\sqrt{9-4\sqrt{5}}.\sqrt{9+4\sqrt{5}}=18-2=16\)

\(\Leftrightarrow A=-4\)

Câu b tương tự

25 tháng 7 2019
https://i.imgur.com/g7mbF2P.jpg
19 tháng 7 2018

1. \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{2}\)

11 tháng 7 2018

cho cách làm dạng bài này luôn. Chỗ nào chưa hiểu thì nói tớ sẽ giải thích thêm (cần góp ý để hoàn thiện thêm phần hướng dẫn đó mà. Cảm ơn cậu).

Phương Nam Phim (à quên, Từ Hạ) hân hạnh giới thiệu bộ phim...

22 tháng 6 2018

Bài làm của: Phùng Khánh Linh

c)\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}\)

= \(\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}\) \(-\) \(\sqrt{4^2-2.4.\sqrt{8}+\left(\sqrt{8}\right)^2}\)

= \(\sqrt{\left(3-2\sqrt{2}\right)^2}\) \(-\) \(\sqrt{\left(4-\sqrt{8}\right)^2}\)

= \(\left|3-2\sqrt{2}\right|-\left|4-\sqrt{8}\right|\)

= (3 - 2\(\sqrt{2}\)) - (4 - \(\sqrt{8}\))

= 3 - 2\(\sqrt{2}\) - 4 + \(\sqrt{8}\)

= -1

22 tháng 6 2018

\(a.\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+2\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}.1+1}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\text{|}\sqrt{3}+1\text{|}-\text{|}\sqrt{3}-1\text{|}=2\)\(b.\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}-\sqrt{5+4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\text{|}\sqrt{5}-2\text{|}-\text{|}\sqrt{5}+2\text{|}=-4\) Còn lại tương tự nhé .

17 tháng 7 2017

a,\(\sqrt{\left(\sqrt{3}-1\right)^2}\) \(+\sqrt{\left(\sqrt{3}+1\right)^2}=2\sqrt{3}\)

b. \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}=3\sqrt{5}\)

c,\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}=4\)

d.\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2\sqrt{2}\)

6 tháng 7 2017

a,\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}=\sqrt{2^2+2\cdot2\cdot\left(2\sqrt{5}\right)+\left(2\sqrt{5}\right)^2}\) \(+\sqrt{\left(\sqrt{5}\right)^2-2\cdot2\sqrt{5}+2^2}=\sqrt{\left(2+2\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)=\(2+2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}\) 

b,\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}=3-2\sqrt{2}+2\sqrt{2}+1=4\)

c,\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2-\sqrt{2}+3\sqrt{2}-2=2\sqrt{2}\)

6 tháng 7 2017

câu b với câu c giải thích ra dùm e đc kh ạ?

17 tháng 7 2017

a,

\(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\\ =\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\\ =\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\\ =\sqrt{3}-1+\sqrt{3}+1\\ =2\sqrt{3}\)

b,

\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\\ =\sqrt{24+4\cdot\sqrt{4}\cdot\sqrt{5}}+\sqrt{9-4\sqrt{5}}\\ =\sqrt{24+4\sqrt{20}}+\sqrt{9-4\sqrt{5}}\\ =\sqrt{20+4\sqrt{20}+4}+\sqrt{5-4\sqrt{5}+4}\\ =\sqrt{\left(\sqrt{20}+4\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{20}+4\right|+\left|\sqrt{5}-2\right|\\ =\sqrt{20}+4+\sqrt{5}-2\\ =2+2\sqrt{5}+\sqrt{5}\\ =2+3\sqrt{5}\)

c,

\(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\\ =\sqrt{17-6\cdot\sqrt{4}\cdot\sqrt{2}}+\sqrt{9+2\cdot\sqrt{4}\cdot\sqrt{2}}\\ =\sqrt{17-6\sqrt{8}}+\sqrt{9+2\sqrt{8}}\\ =\sqrt{9-6\sqrt{8}+8}+\sqrt{8+2\sqrt{8}+1}\\ =\sqrt{\left(3-\sqrt{8}\right)^2}+\sqrt{\left(\sqrt{8}+1\right)^2}\\ =\left|3-\sqrt{8}\right|+\left|\sqrt{8}+1\right|\\ =3-\sqrt{8}+\sqrt{8}+1\\ =4\)

d,

\(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\\ =\sqrt{6-4\sqrt{2}}+\sqrt{22-4\cdot\sqrt{9}\cdot\sqrt{2}}\\ =\sqrt{6-4\sqrt{2}}+\sqrt{22-4\sqrt{18}}\\ =\sqrt{4-4\sqrt{2}+2}+\sqrt{18-4\sqrt{18}+4}\\ =\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{18}-2\right)^2}\\ =\left|2-\sqrt{2}\right|+\left|\sqrt{18}-2\right|\\ =2-\sqrt{2}+\sqrt{18}-2\\ =-\sqrt{2}+\sqrt{18}\\ =-\sqrt{2}+3\sqrt{2}\\ =2\sqrt{2}\)

17 tháng 7 2017

Cảm ơn nhìu nhahahaleuleu

26 tháng 7 2017

a)\(\sqrt{\dfrac{4}{9-4\sqrt{5}}}-\sqrt{\dfrac{4}{9+4\sqrt{5}}} \Leftrightarrow \dfrac{\sqrt{4}}{\sqrt{(2-\sqrt{5}})^{2}}-\dfrac{\sqrt{4}}{(2+\sqrt{5})^{2}} \Leftrightarrow \dfrac{2(2+\sqrt{5})}{(\sqrt{5}-2)(2+\sqrt{5})}-\dfrac{2(\sqrt{5}-2)}{(\sqrt{5}-2)(2+\sqrt{5})} \Leftrightarrow \dfrac{4+2\sqrt{5}-(2\sqrt{5}-4)}{4-5} \Leftrightarrow \dfrac{8}{-1} = -8\)b)\(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{2}} =\dfrac{\sqrt{2}\sqrt{8-4\sqrt{3}}}{\sqrt{2}\sqrt{2}} =\dfrac{\sqrt{16-8\sqrt{3}}}{2} =\dfrac{\sqrt{(2-2\sqrt{3})^{2}}}{2} =\dfrac{2\sqrt{3}-2}{2} =\dfrac{2(\sqrt{3}-1)}{2} =\sqrt{3}-1\)c)\(\sqrt{14-8\sqrt{3}}-\sqrt{24-12\sqrt{3}} =\sqrt{2}\sqrt{7-4\sqrt{3}}-\sqrt{2}\sqrt{12+6\sqrt{3}} =\sqrt{2}(\sqrt{(4-\sqrt{3})^{2}}-\sqrt{(3+\sqrt{3})^{2}}) =\sqrt{2}((4-\sqrt{3})-(3+\sqrt{3})) =\sqrt{2}(1-2\sqrt{3}) =\sqrt{2}-2\sqrt{6}\)

21 tháng 8 2018

a) \(\dfrac{2\sqrt{3}+2}{4\sqrt{3}+4}=\dfrac{2\left(\sqrt{3}+1\right)}{4\left(\sqrt{3}+1\right)}=\dfrac{1}{2}\)

b) \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{5}}{2}\)

c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\\ =\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=1+\sqrt{2}\)

d) \(\sqrt{9+\sqrt{17}}.\sqrt{9-\sqrt{17}}=\sqrt{\left(9+\sqrt{17}\right)\left(9-\sqrt{17}\right)}\\ =\sqrt{81-17}=\sqrt{64}=8\)

21 tháng 8 2018

\(a.\dfrac{2\sqrt{3}+2}{4\sqrt{3}+4}=\dfrac{2\left(\sqrt{3}+1\right)}{4\left(\sqrt{3}+1\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)

\(b.\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{2\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{5}}{2}\)

\(c.\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\dfrac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}=\dfrac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2}+\dfrac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}=1+\sqrt{2}\)

\(d.\sqrt{9+\sqrt{17}}.\sqrt{9-\sqrt{17}}=\sqrt{\left(9+\sqrt{17}\right)\left(9-\sqrt{17}\right)}=\sqrt{81-17}=8\)