K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

1.

\(V=\pi \int ^4_1[x^{\frac{1}{2}}e^{\frac{x}{2}}]^2dx=\pi \int ^4_1(xe^x)dx\)

\(=\pi \int ^4_1xd(e^x)=\pi (|^4_1xe^x-\int ^4_1e^xdx)\)

\(=\pi |^4_1(xe^x-e^x)=\pi (3e^4)=3\pi e^4\) 

 

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

2.

\(V=\pi \int ^1_0(x\sqrt{\ln (x^3+1)})^2dx=\pi \int ^1_0x^2\ln (x^3+1)dx\)

\(=\frac{1}{3}\pi \int ^1_0\ln (x^3+1)d(x^3+1)\)

\(=\frac{1}{3}\pi \int ^2_1ln tdt=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1td(\ln t))\)

\(=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1dt)=\frac{1}{3}\pi |^2_1(t\ln t-t)=\frac{1}{3}\pi (2\ln 2-1)\)

 

 

24 tháng 5 2017

Nguyên hàm, tích phân và ứng dụng

11 tháng 4 2017

a) Phương trình hoành độ giao điểm

1 - x2 = 0 ⇔ x = ±1.

Thể tích cần tìm là :

b) Thể tích cần tìm là :

c) Thể tích cần tìm là :

.



1 tháng 4 2017

a) Diện tích hình phẳng cần tìm là:

S=2∫−1(x2+1)dx=(x33+x)∣∣2−1=6

b) Diện tích hình phẳng cần tìm là:

S=e∫1e| lnx |dx=e∫1e|lnx|dx+e∫1|lnx|dx=−1∫1elnxdx+e∫1lnxdxS=∫1ee|ln⁡x|dx=∫1ee|ln⁡x|dx+∫1e|ln⁡x|dx=−∫1e1ln⁡xdx+∫1eln⁡xdx

Mặt khác:

∫lnxdx=xlnx−∫xdlnx=xlnx−∫dx=xlnx−x+C∫ln⁡xdx=xln⁡x−∫xdln⁡x=xln⁡x−∫dx=xln⁡x−x+C

Do đó:

S=−1∫1elnxdx+e∫1lnxdx=1e∫1lnxdx+e∫1xdx=(xlnx−x)∣∣∣1e1+(xlnx−x)∣∣e1=2(1- \(\dfrac{1}{e}\))

Khó quá, làm mà điên não



16 tháng 11 2016

Trên [\(\frac{1}{10}\);1] thì |logx|= -logx

trên (1;10] thì |logx|=logx

vậy ta có: S=\(\int\limits^{10}_{0,1}\left|logx\right|dx=-\int\limits^1_{0,1}logx.dx+\int\limits^{10}_1logx.dx\)

S=\(\left(\frac{x}{ln10}-x.logx\right)|^1_{0,1}\) + \(\left(xlogx-\frac{x}{ln10}\right)|^{10}_1\) =...

27 tháng 10 2016

ai giúp mình với

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

Hỏi đáp Toán

1 tháng 4 2017

a)

Ta có:

∫π20cos2xsin2xdx=12∫π20cos2x(1−cos2x)dx=12∫π20[cos2x−1+cos4x2]dx=14∫π20(2cos2x−cos4x−1)dx=14[sin2x−sin4x4−x]π20=−14.π2=−π8∫0π2cos⁡2xsin2xdx=12∫0π2cos⁡2x(1−cos⁡2x)dx=12∫0π2[cos⁡2x−1+cos⁡4x2]dx=14∫0π2(2cos⁡2x−cos⁡4x−1)dx=14[sin⁡2x−sin⁡4x4−x]0π2=−14.π2=−π8

b)

Ta có: Xét 2x – 2-x ≥ 0 ⇔ x ≥ 0.

Ta tách thành tổng của hai tích phân:

∫1−1|2x−2−x|dx=−∫0−1(2x−2−x)dx+∫10(2x−2−x)dx=−(2xln2+2−xln2)∣∣0−1+(2xln2+2−xln2)∣∣10=1ln2∫−11|2x−2−x|dx=−∫−10(2x−2−x)dx+∫01(2x−2−x)dx=−(2xln⁡2+2−xln⁡2)|−10+(2xln⁡2+2−xln⁡2)|01=1ln⁡2

c)

∫21(x+1)(x+2)(x+3)x2dx=∫21x3+6x2+11x+6x2dx=∫21(x+6+11x+6x2)dx=[x22+6x+11ln|x|−6x]∣∣21=(2+12+11ln2−3)−(12+6−6)=212+11ln2∫12(x+1)(x+2)(x+3)x2dx=∫12x3+6x2+11x+6x2dx=∫12(x+6+11x+6x2)dx=[x22+6x+11ln⁡|x|−6x]|12=(2+12+11ln⁡2−3)−(12+6−6)=212+11ln⁡2

d)

∫201x2−2x−3dx=∫201(x+1)(x−3)dx=14∫20(1x−3−1x+1)dx=14[ln|x−3|−ln|x+1|]∣∣20=14[1−ln2−ln3]=14(1−ln6)∫021x2−2x−3dx=∫021(x+1)(x−3)dx=14∫02(1x−3−1x+1)dx=14[ln⁡|x−3|−ln⁡|x+1|]|02=14[1−ln⁡2−ln⁡3]=14(1−ln⁡6)

e)

∫π20(sinx+cosx)2dx=∫π20(1+sin2x)dx=[x−cos2x2]∣∣π20=π2+1∫0π2(sinx+cosx)2dx=∫0π2(1+sin⁡2x)dx=[x−cos⁡2x2]|0π2=π2+1

g)

I=∫π0(x+sinx)2dx∫π0(x2+2xsinx+sin2x)dx=[x33]∣∣π0+2∫π0xsinxdx+12∫π0(1−cos2x)dxI=∫0π(x+sinx)2dx∫0π(x2+2xsin⁡x+sin2x)dx=[x33]|0π+2∫0πxsin⁡xdx+12∫0π(1−cos⁡2x)dx

Tính :J=∫π0xsinxdxJ=∫0πxsin⁡xdx

Đặt u = x ⇒ u’ = 1 và v’ = sinx ⇒ v = -cos x

Suy ra:

J=[−xcosx]∣∣π0+∫π0cosxdx=π+[sinx]∣∣π0=πJ=[−xcosx]|0π+∫0πcosxdx=π+[sinx]|0π=π

Do đó:

I=π33+2π+12[x−sin2x2]∣∣π30=π33+2π+π2=2π3+15π6