Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a) \(\left(3x+1\right)\left(3x-1\right)=9x^2-1\)
\(\left(x+5y\right)\left(x-5y\right)=x^2-25y\)
b) \(\left(x-3\right)\left(x^2+3x+9\right)=x^3-27\)
\(\left(x-5\right)\left(x^2+5x+25\right)=x^3-125\)
Bài 3:
a: \(\Leftrightarrow x^2+8x+16-x^2+1=16\)
=>8x+1=0
=>x=-1/8
b: \(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
=>2x+255=0
=>x=-255/2
c: \(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6x^2+12x+6=49\)
=>24x+62=49
=>24x=-13
=>x=-13/24
d: =>x^3+8-x^3-2x=15
=>-2x=15-8=7
=>x=-7/2
gt : \(x^2-4x+1=0\Leftrightarrow x^2+1=4x\)(1)
\(\Leftrightarrow\left(x^2+1\right)^2=16x^2\Leftrightarrow x^4+2x^2+1=16x^2\Rightarrow x^4+1=14x^2\)(2)
\(\Leftrightarrow\left(x^2+1\right)^3=64x^3\Leftrightarrow x^6+3x^4+3x^2+1=64x^3\)
\(\Leftrightarrow x^6+3x^2\left(x^2+1\right)+1=64x^3\Leftrightarrow x^6+12x^3+1=64x^3\)
\(\Rightarrow x^6+1=52x^3\)(3)
Thay (1);(2);(3) vào T ta dược :
\(T=\left(\frac{x^2+1}{x}\right)^2+\left(\frac{x^4+1}{x^2}\right)^2+\left(\frac{x^6+1}{x^3}\right)^2\)
\(=\left(\frac{4x}{x}\right)^2+\left(\frac{14x^2}{x^2}\right)^2+\left(\frac{52x^3}{x^3}\right)^2=4^2+14^2+52^2=2916\)
Bài 4:
1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)
=>\(x^3-1-x^3-6x=11\)
=>-6x-1=11
=>-6x=11+1=12
=>\(x=\dfrac{12}{-6}=-2\)
2: \(16x^2-\left(3x-4\right)^2=0\)
=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)
=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)
=>(x+4)(7x-4)=0
=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)
3: \(x^3-x^2-3x+3=0\)
=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)
=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))
=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)
=>\(x^2+4x+4=x^2-1\)
=>4x+4=-1
=>4x=-5
=>\(x=-\dfrac{5}{4}\left(nhận\right)\)
5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)
=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)
=>3x+1=0
=>3x=-1
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)
\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)
=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-x-3}{x}=1\)
=>-x-3=x
=>-2x=3
=>\(x=-\dfrac{3}{2}\left(nhận\right)\)
1) \(a,\left(x-3\right)\left(x+7\right)-\left(x+5\right)\left(x-1\right)=x^2+4x-21-x^2-4x+5=-16\)
\(b,\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2=\left(x+8-x+2\right)^2=\left(10\right)^2=100\)
c, \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)=x^3+1-x^3+1=2\)
a, \(\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=\left(x+1\right)^3-\left(x-1\right)^3-3x\left(x+1\right)+3\left(x+1\right)x=\left(x+1\right)^3-\left(x-1\right)^3=2\left(\right)\)
hình như sai r thui ko làm nữa
Bài 2:
a: \(\Leftrightarrow x^3-27-x\left(x^2-4\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
=>4x-27=1
hay x=7
b: \(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x-1\right)^2+10=0\)
\(\Leftrightarrow6x^2+12-6x^2+12x-6=0\)
=>12x+6=0
hay x=-1/2
=
=