Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(P=\frac{1}{5}-\frac{2}{3}=\frac{3-10}{15}=\frac{-7}{15}\)
\(\left(\frac{1}{9}\right)^{2015}.9^{2015}-96^2:24^2=1^{2015}-4^2=1-16=-15\)
\(16\frac{2}{7}:\left(\frac{-3}{5}\right)-28\frac{2}{7}:\left(\frac{-3}{5}\right)=\left(16\frac{2}{7}-28\frac{2}{7}\right):\left(\frac{-3}{5}\right)=-12.\frac{-5}{3}=20\)
\(\left(-2\right)^3.\left(\frac{3}{4}-0,25\right):\left(2\frac{1}{4}-1\frac{1}{6}\right)=-8.\frac{1}{2}:\frac{13}{12}=-8.\frac{1}{2}.\frac{12}{13}=\frac{-48}{13}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}
\)
\(2B=1-\frac{1}{3^{2004}}\)
\(B=\frac{1}{2}-\frac{1}{2\cdot3^{2004}}\)
Do đó B<\(\frac{1}{2}\)
chúc thành công
Có B=\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+\(\frac{1}{3^3}\)+...+\(\frac{1}{3^{2004}}\)+\(\frac{1}{3^{2005}}\)
=>3B=3.(\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\))
=>3B=1+\(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)
=>3B-B=(1+\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\))-(\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\))
=>2B=\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-....-\frac{1}{3^{2004}}-\frac{1}{3^{2005}}\)
=>2B=1-\(\frac{1}{3^{2005}}\)
=>B=(\(1-\frac{1}{3^{2005}}\)):2
Mà \(\left(1-\frac{1}{3^{2005}}\right)< \frac{1}{2}\)=>\(\left(1-\frac{1}{3^{2005}}\right):2< \frac{1}{2}\)
=>B<\(\frac{1}{2}\)(đpcm)
bạn ơi mình sửa cho bạn nè!
B=(1-\(\dfrac{1}{3^{2005}}\)) :2 = \(\dfrac{1}{2}\)-\(\dfrac{1}{\dfrac{3^{2005}}{2}}\) < \(\dfrac{1}{2}\)