Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(\frac{a-2\sqrt{a}+1}{a+1}\right):\left[\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\sqrt{a}\left(a+1\right)-\left(a+1\right)}\right]\)
\(M=\left[\frac{\left(\sqrt{a}-1\right)^2}{a+1}\right]:\left[\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right]\)
\(M=\frac{\left(\sqrt{a}-1\right)^2}{a+1}:\left[\frac{a+1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right]\)
\(M=\frac{\left(\sqrt{a}-1\right)^2}{a+1}:\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(a+1\right)}\)
\(M=\frac{\left(\sqrt{a}-1\right)^2}{a+1}.\frac{\left(\sqrt{a}-1\right)\left(a+1\right)}{\left(\sqrt{a}-1\right)^2}=\sqrt{a}+1\)
\(M>1\Leftrightarrow\sqrt{a}-1>1\Leftrightarrow\sqrt{a}>2\Leftrightarrow a>4\)
\(M=\sqrt{3-2\sqrt{2}}-1\)
\(M=\sqrt{\left(\sqrt{2}-1\right)^2}-1=\sqrt{2}-1-1=\sqrt{2}-2\)
1) Cách 1 :
\(M=\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}\)
\(M=\sqrt{9-6\sqrt{2}+2}+\sqrt{9+6\sqrt{2}+2}\)
\(M=\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(3+\sqrt{2}\right)^2}\)
\(M=\left|3-\sqrt{2}\right|+\left|3+\sqrt{2}\right|\)
\(M=3-\sqrt{2}+3+\sqrt{2}=6\)
Cách 2 :
\(M=\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}\)
\(\Rightarrow M^2=11-6\sqrt{2}+2\sqrt{11-6\sqrt{2}}.\sqrt{11+6\sqrt{2}}+11+6\sqrt{2}\)
\(\Leftrightarrow M^2=22+2.7=36\)
\(\Leftrightarrow M=6\left(\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}>0\right)\)
2)
\(A=53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}\)
\(\Leftrightarrow A=53-20\sqrt{4+\sqrt{8-4\sqrt{2}+1}}\)
\(\Leftrightarrow A=53-20\sqrt{4+\sqrt{\left(2\sqrt{2}-1\right)^2}}\)
\(\Leftrightarrow A=53-20\sqrt{4+\left|2\sqrt{2}-1\right|}\)
\(\Leftrightarrow A=53-20\sqrt{4+2\sqrt{2}-1}\)
\(\Leftrightarrow A=53-20\sqrt{3+2\sqrt{2}}\)
\(\Leftrightarrow A=53-20\sqrt{2+2\sqrt{2}+1}\)
\(\Leftrightarrow A=53-20\left(\sqrt{2}+1\right)\)
\(\Leftrightarrow A=53-20\sqrt{2}-20=33-20\sqrt{2}\)
3)
\(M=\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\)
\(M=\sqrt{3-\sqrt{5}}.\left(3\sqrt{10}-3\sqrt{2}+5\sqrt{2}-\sqrt{10}\right)\)
\(M=\sqrt{3-\sqrt{5}}\left(2\sqrt{10}+2\sqrt{2}\right)\)
\(M=2\sqrt{2}.\sqrt{3-\sqrt{5}}\left(\sqrt{5}+1\right)\)
\(\Rightarrow M^2=8.\left(3-\sqrt{5}\right).\left(5+2\sqrt{5}+1\right)\)
\(\Leftrightarrow M^2=\left(24-8\sqrt{5}\right)\left(6+2\sqrt{5}\right)\)
\(\Leftrightarrow M^2=144+48\sqrt{5}-48\sqrt{5}-80\)
\(\Leftrightarrow M^2=64\Leftrightarrow M=8\left(\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right)>0\right)\)
b)\(\sqrt{m+2\sqrt{m-1}}+\sqrt{m-2\sqrt{m-1}}\)
\(\Leftrightarrow\sqrt{m-1+2\sqrt{m-1}+1}+\sqrt{m-1-2\sqrt{m-1}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{m-1}+1\right)^2}+\sqrt{\left(\sqrt{m-1}-1\right)^2}\)
\(\Leftrightarrow\sqrt{m-1}+1+\sqrt{m-1}-1\Leftrightarrow2\sqrt{m-1}\)
Câu 1 phá từng lớp ra :VD\(9+4\sqrt{2}\) =\((\sqrt{2}+2)^2\)
Câu 2:m+2\(\sqrt{m-1}\) =m-1+1+2\(\sqrt{m-1}\) =\((\sqrt{m-1} -1)^2 \)
M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)
=\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)