\(\sqrt{11-2\sqrt{30}}-\sqrt{11+2\sqrt{30}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2018

Đặt \(A=\sqrt{11-2\sqrt{30}}-\sqrt{11+2\sqrt{30}}\)

\(\Leftrightarrow A^2=11-2\sqrt{30}+11+2\sqrt{30}-2\sqrt{\left(11-2\sqrt{30}\right)\left(11+2\sqrt{30}\right)}\)

\(\Leftrightarrow A^2=22-2\sqrt{11^2-\left(2\sqrt{30}\right)^2}\)

\(\Leftrightarrow A^2=22-2=20\)

\(\Leftrightarrow A=\pm\sqrt{20}\)

29 tháng 1 2018

\(\sqrt{11-2\sqrt{30}}< \sqrt{11+2\sqrt{30}}\)

Nên A chỉ nhận giá trị \(-\sqrt{20}\)

4 tháng 7 2017

\(A=\sqrt{7}-2+\sqrt{7}-5\\ =2\sqrt{7}-7\\ =\sqrt{7}\left(2-\sqrt{7}\right)\)

4 tháng 7 2017

\(B=\sqrt{16+8\sqrt{7}+7}-\sqrt{7}\)

\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(=4+\sqrt{7}-\sqrt{7}\\ =4\)

25 tháng 12 2018

\(D=\sqrt{6-2.\sqrt{5}.\sqrt{6}+5}-\sqrt{6+2.\sqrt{5}.\sqrt{6}+5}\)

\(D=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}\)

\(D=|\sqrt{6}-\sqrt{5}|-|\sqrt{6}+\sqrt{5}|\)

\(D=\sqrt{6}-\sqrt{5}-\sqrt{6}-\sqrt{5}\)

\(D=-2\sqrt{5}\)

29 tháng 10 2017

\(\sqrt{11-2\sqrt{30}}-\sqrt{11+2\sqrt{30}}\)

\(=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}\)

\(=\sqrt{6}-\sqrt{5}-\sqrt{6}-\sqrt{5}\)

\(=-2\sqrt{5}\)

20 tháng 7 2018

\(A=\dfrac{\sqrt{3}-3}{\sqrt{2-\sqrt{3}}+2\sqrt{2}}+\dfrac{\sqrt{3}+3}{\sqrt{2+\sqrt{3}}-2\sqrt{2}}\)

\(A=\dfrac{\sqrt{2}\left(\sqrt{3}-3\right)}{\sqrt{2}.\left(\sqrt{2-\sqrt{3}}+2\sqrt{2}\right)}+\dfrac{\sqrt{2}.\left(\sqrt{3}+3\right)}{\sqrt{2}.\left(\sqrt{2+\sqrt{3}}-2\sqrt{2}\right)}\)

\(A=\dfrac{\sqrt{6}-3\sqrt{2}}{\sqrt{4-2\sqrt{3}}+4}+\dfrac{\sqrt{6}+3\sqrt{2}}{\sqrt{4+2\sqrt{3}}-4}\)

\(A=\dfrac{\sqrt{6}-3\sqrt{2}}{\sqrt{\left(\sqrt{3}-1\right)^2}+4}+\dfrac{\sqrt{6}+3\sqrt{2}}{\sqrt{\left(\sqrt{3}+1\right)^2}-4}\)

\(A=\dfrac{\sqrt{6}-3\sqrt{2}}{\sqrt{3}-1+4}+\dfrac{\sqrt{6}+3\sqrt{2}}{\sqrt{3}+1-4}\)

\(A=\dfrac{\sqrt{3}\left(\sqrt{2}-\sqrt{6}\right)}{\sqrt{3}\left(1+\sqrt{3}\right)}+\dfrac{\sqrt{3}\left(\sqrt{2}+\sqrt{6}\right)}{\sqrt{3}\left(1-\sqrt{3}\right)}\)

\(A=\dfrac{\sqrt{2}-\sqrt{6}}{1+\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{6}}{1-\sqrt{3}}=\dfrac{\left(\sqrt{2}-\sqrt{6}\right)\left(1-\sqrt{3}\right)+\left(\sqrt{2}+\sqrt{6}\right)\left(1+\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}\)

\(A=\dfrac{\sqrt{2}-\sqrt{6}-\sqrt{6}+3\sqrt{2}+\sqrt{2}+\sqrt{6}+\sqrt{6}+3\sqrt{2}}{1-3}=\dfrac{8\sqrt{2}}{-2}=-4\sqrt{2}\)

* \(B=\dfrac{\sqrt{11+2\sqrt{30}}-\sqrt{11-2\sqrt{30}}}{\sqrt{5}}\) \(=\dfrac{\sqrt{6+2.\sqrt{6}.\sqrt{5}+5}-\sqrt{6-2.\sqrt{6}.\sqrt{5}+5}}{\sqrt{5}}\)\(=\dfrac{\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}}{\sqrt{5}}\)

\(=\dfrac{\sqrt{6}+\sqrt{5}-\sqrt{6}+\sqrt{5}}{\sqrt{5}}=\dfrac{2\sqrt{5}}{\sqrt{5}}=2\)

* \(C=2\sqrt{3+\sqrt{5}}-\left(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\right)\)

Đặt:\(y=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\Rightarrow y^2=4+\sqrt{15}+4-\sqrt{15}+2\sqrt{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}=8+2=10\Rightarrow y=\sqrt{10}\)

Suy ra: \(C=\sqrt{12+4\sqrt{5}}-y=\sqrt{\left(\sqrt{10}+\sqrt{2}\right)^2}-\sqrt{10}=\sqrt{10}+\sqrt{2}-\sqrt{10}=\sqrt{2}\)* \(D=\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\dfrac{\left(\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}\right)+\left(\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2-\sqrt{3}}\right)}{\left(\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}\right)}=\dfrac{2+\sqrt{3}+2-\sqrt{3}}{1}=4\)

DD
26 tháng 5 2021

\(A=\left(\sqrt{22}+7\sqrt{2}\right)\sqrt{30-7\sqrt{11}}\)

\(2A=\left(\sqrt{44}+7\sqrt{4}\right)\sqrt{60-2.7\sqrt{11}}\)

\(2A=\left(2\sqrt{11}+14\right)\sqrt{7^2-2.7\sqrt{11}+\left(\sqrt{11}\right)^2}\)

\(2A=\left(2\sqrt{11}+14\right)\sqrt{\left(7-\sqrt{11}\right)^2}\)

\(2A=\left(2\sqrt{11}+14\right)\left|7-\sqrt{11}\right|\)

\(2A=\left(2\sqrt{11}+14\right)\left(7-\sqrt{11}\right)\)

\(A=\left(7+\sqrt{11}\right)\left(7-\sqrt{11}\right)\)

\(A=49-11=38\)

1 tháng 8 2017

tớ ko chép lại đề, kí hiệu nhé

(1) \(=\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{\left|\sqrt{6}+\sqrt{5}\right|^2}=\left(\sqrt{6}-\sqrt{5}\right)^2-\left(\sqrt{6}+\sqrt{5}\right)=1-2\sqrt{30}-\sqrt{6}-\sqrt{5}\)

ai ra đề mà để đáp án dài thế này mất thẩm mĩ quá!!!

(2) \(=\sqrt{\left|\sqrt{5}+\sqrt{3}\right|^2}-\sqrt{\left|\sqrt{5}-\sqrt{3}\right|^2}=\left(\sqrt{5}+\sqrt{3}\right)-\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}\)

(3) \(=\sqrt{\left|\sqrt{7}+2\right|^2}-\sqrt{\left|3-\sqrt{5}\right|^2}=\sqrt{7}+2-3+\sqrt{5}=\sqrt{7}+\sqrt{5}-1\)

lại thêm 1 phép tính không đẹp....

(4) \(=\sqrt{\left|3\sqrt{2}-2\right|^2}-\sqrt{\left|3\sqrt{2}+1\right|^2}=3\sqrt{2}-2-3\sqrt{2}-1=-3\)

(5) \(=\sqrt{\left|2\sqrt{3}-1\right|^2}+\sqrt{\left|2\sqrt{3}-3\right|^2}=2\sqrt{3}-1+2\sqrt{3}-3=4\sqrt{3}-4\)

kiểm tra lại kết quả nhé ^^! Cảm ơn!

8 tháng 9 2017

\(\sqrt{11+2\sqrt{30}}+\sqrt{9+2\sqrt{20}}=\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{6}+\sqrt{5}+\sqrt{5}+2=\sqrt{6}+2\sqrt{5}+2\)