\(\dfrac{< A-1^o}{4}\)=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a-1}{4}=\dfrac{b-2}{3}=\dfrac{c-3}{2}=\dfrac{d-4}{1}=\dfrac{a+b+c+d-1-2-3-4}{4+3+2+1}=\dfrac{350}{10}=35\)

Do đó: a-1=140; b-2=105; c-3=70; d-4=35

=>a=141; b=107; c=73; d=39

a: =>3x-1>8

=>3x>9

hay x>3

b: \(\Leftrightarrow2x+4< 9\)

=>2x<5

hay x<5/2

c: \(\Leftrightarrow1-2x>12\)

=>-2x>11

hay x<-11/2

d: \(\Leftrightarrow6-4x< 5\)

=>-4x<-1

hay x>1/4

22 tháng 4 2017

Giải bài 31 trang 48 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 31 trang 48 SGK Toán 8 Tập 2 | Giải toán lớp 8

2 tháng 4 2019

biểu diễn trục số trên máy làm thế nào

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a-1}{4}=\dfrac{b-2}{3}=\dfrac{c-3}{2}=\dfrac{d-4}{1}=\dfrac{a+b+c+d-1-2-3-4}{4+3+2+1}=\dfrac{360-10}{10}=35\)

Do đó: a-1=140; b-2=105; c-3=70; d-4=35

=>a=141; b=107; c=73; d=39

20 tháng 3 2017

Bài 1:

Áp dụng BĐt cauchy dạng phân thức:

\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)

dấu = xảy ra khi 2x+y=x+2y <=> x=y

20 tháng 3 2017

Bài 2:

ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)

\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

Áp dụng BĐT trên vào bài toán ta có:

\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

......

dấu = xảy ra khi a=b=c

Bài 2:

Áp dụng BĐT cauchy cho 2 số dương:

\(a^2+1\ge2a\)

\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm

dấu = xảy ra khi a=b=c=1

a: \(x< -9:\dfrac{3}{2}=-9\cdot\dfrac{2}{3}=-6\)

b: 2/3x>-2

hay x>-2:2/3=-3

c: \(2x>\dfrac{9}{5}-\dfrac{4}{5}=1\)

hay x>1/2

d: \(\Leftrightarrow x\cdot\dfrac{3}{5}>6-4=2\)

hay x>2:3/5=2x5/3=10/3

13 tháng 8 2018

giải bất phương trình

a: =>-4x>16

=>x<-4

c: =>20x-25<=21-3x

=>23x<=46

=>x<=2

d: =>20(2x-5)-30(3x-1)<12(3-x)-15(2x-1)

=>40x-100-90x+30<36-12x-30x+15

=>-50x-70<-42x+51

=>-8x<121

=>x>-121/8

Chọn B

a: \(B=\left(\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{x^2-x-12}{\left(x-3\right)\left(x+3\right)}-\dfrac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{x+3-1}{x+3}\)

\(=\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+2}{x+3}\)

\(=\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+2}=\dfrac{3}{x-3}\)

b: Ta có: |2x+1|=5

=>2x+1=5 hoặc 2x+1=-5

=>2x=4 hoặc 2x=-6

=>x=2

Thay x=2 vào B, ta được:

\(B=\dfrac{3}{2-3}=\dfrac{3}{-1}=-3\)

d: Để B<0 thì x-3<0

hay x<3