\(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+......">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

-1/7S=(-1/7)^1+(-1/7)^2+(-1/7)^3+...........+(-1/7)^2008

(-1/7)S-S=[(-1/7)^1+(-1/7)^2+........+(-1/7)^2008]-[(-1/7)^0+(-1/7)^1+.....+(-1/7)^2007]

S(-1/7-1)=(-1/7)^2008-(-1/7)^0

(-8/7)S=(-1/7)^2008-1

S=[(-1/7)^2008-1]:(-8/7)

20 tháng 12 2017

nguyen thi thanh lam sai

4 tháng 8 2017

tinh -1/7S rồi lấy -1/7.S-S=-8/7.S=..

10 tháng 3 2019

\(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+...+\left(-\frac{1}{7}\right)^{2007}\)

\(-\frac{1}{7}S=\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2008}\)

\(-\frac{1}{7}S-S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^{2008}\)

\(-\frac{8}{7}S=1+\frac{\left(-1\right)^{2008}}{7^{2008}}=1+\frac{1}{7^{2008}}=\frac{7^{2008}+1}{7^{2008}}\)

\(S=\frac{7^{2008}+1}{7^{2008}}:\left(-\frac{8}{7}\right)\)

HOK TOT

17 tháng 3 2016

S=1-1/7-(1/7)^3-......-(1/7)^2017

49S=49-7-1/7-(1/7)^3-.,.....-(1/7)^2015

49S-S=48S=49-7-1-(1/7)^2017

48S=41-(1/7)^2017

S=41/48-(1/7)^2017/48

k nha

3 tháng 1 2017

S=1+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007

=>7S=7+(-1/7)^1+(1/7)^2+...+(-1/7)^2006

=>(7-1)S=6-(1/7)^2007

=>S=1-(-1/7^2007/6)

1/7S=(-1/7)^1+...+(-1/7)2018

1/7S-S=(-1/7)^1+....+(-1/7)^2018-(-1/7)^0-...-(-1/7)^2017

-6/7S=(-1/7)^2018-1=(-1/7)^2018-1:-6/7

17 tháng 1 2017

S=(−1/7)^0+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007

7S = 1+(−1/7)^1+(−1/7)^2+...+(−1/7)^2007

=> 7S = 7+(−1/7)^1+(−1/7)^2+...+(−1/7)^2006

=> 6S = 6-(−1/7)^2007

=> S= 1-(−1/7^2007/6)

17 tháng 1 2017

sai rùi bạn à bài này mình biết làm rùi

27 tháng 1 2015

a)S=1+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007


=>7S=7+(-1/7)^1+(1/7)^2+...+(-1/7)^2006

=>(7-1)S=6-(1/7)^2007

=>S=1-(-1/7^2007/6)