Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(F=sin^2\dfrac{\pi}{6}+...+sin^2\pi=\left(sin^2\dfrac{\pi}{6}+sin^2\dfrac{5\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+sin^2\dfrac{4\pi}{6}\right)+\left(sin^2\dfrac{3\pi}{6}+sin^2\pi\right)=\left(sin^2\dfrac{\pi}{6}+cos^2\dfrac{\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+cos^2\dfrac{2\pi}{6}\right)+\left(1+0\right)=1+1+1=3\)
\(A=\frac{\sqrt{3}sinx.\left(cosx.cos\frac{\pi}{6}-sinx.sin\frac{\pi}{6}\right)+cosx\left(sin\frac{\pi}{3}cosx-cos\frac{\pi}{6}.sinx\right)}{sin\left(2x+\frac{\pi}{3}\right)}\)
\(A=\frac{\frac{3}{2}sinx.cosx-\frac{\sqrt{3}}{2}sin^2x+\frac{\sqrt{3}}{2}cos^2x-\frac{1}{2}sinx.cosx}{sin\left(2x+\frac{\pi}{3}\right)}\)
\(A=\frac{sinx.cosx+\frac{\sqrt{3}}{2}\left(cos^2x-sin^2x\right)}{sin\left(2x+\frac{\pi}{3}\right)}\)
\(A=\frac{\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x}{sin\left(2x+\frac{\pi}{3}\right)}=\frac{sin2x.cos\frac{\pi}{3}+cos2x.sin\frac{\pi}{3}}{sin\left(2x+\frac{\pi}{3}\right)}\)
\(A=\frac{sin\left(2x+\frac{\pi}{3}\right)}{sin\left(2x+\frac{\pi}{3}\right)}=1\)
\(=cos\left(\dfrac{4}{3}pi\right)+sin\left(\dfrac{pi}{6}\right)+tan\left(-\dfrac{3}{4}pi\right)\)
\(=-\dfrac{1}{2}+\dfrac{1}{2}+1=1\)
\(E=\frac{cosx}{sinx}+\frac{sinx}{1+cosx}=\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}=\frac{cosx+1}{sinx\left(1+cosx\right)}=\frac{1}{sinx}\)
17.
\(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{12}{13}\)
\(0< b< \frac{\pi}{2}\Rightarrow sinb>0\Rightarrow sinb=\sqrt{1-cos^2b}=\frac{4}{5}\)
\(sin\left(a+b\right)=sina.cosb+cosa.sinb=\frac{5}{13}.\frac{3}{5}-\frac{12}{13}.\frac{4}{5}=-\frac{33}{65}\)
18.
\(K=sin\frac{2\pi}{7}+sin\frac{6\pi}{7}+sin\frac{4\pi}{7}\)
\(\Leftrightarrow K.sin\frac{\pi}{7}=sin\frac{\pi}{7}.sin\frac{2\pi}{7}+sin\frac{\pi}{7}.sin\frac{4\pi}{7}+sin\frac{\pi}{7}.sin\frac{6\pi}{7}\)
\(=\frac{1}{2}\left(cos\frac{\pi}{7}-cos\frac{3\pi}{7}+cos\frac{\pi}{7}-cos\frac{5\pi}{7}+cos\frac{5\pi}{7}-cos\frac{7\pi}{7}\right)\)
\(=\frac{1}{2}\left(cos\frac{\pi}{7}-cos\pi\right)=\frac{1}{2}\left(cos\frac{\pi}{7}+1\right)=\frac{1}{2}\left(2cos^2\frac{\pi}{14}-1+1\right)=cos^2\frac{\pi}{14}\)
\(\Leftrightarrow K.2.sin\frac{\pi}{14}.cos\frac{\pi}{14}=cos^2\frac{\pi}{14}\)
\(\Leftrightarrow2K=\frac{cos\frac{\pi}{14}}{sin\frac{\pi}{14}}=cot\frac{\pi}{14}=a\Rightarrow K=\frac{a}{2}\)