Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ PH của mẫu 1 là:
\(a=-log\left[H^+\right]=-log\left[8\cdot10^{-7}\right]=-\left(log8-7\right)\)
\(=7-log8=7-log2^3=7-3\cdot log2\)
Độ PH của mẫu 2 là:
\(b=-log\left[2\cdot10^{-9}\right]=-\left(log2-9\right)=9-log2\)
\(a-b=7-3\cdot log2-9+log2=-2log2-2< 0\)
=>a<b
=>Độ PH của mẫu 2 lớn hơn
Ta có: \(lim\dfrac{3-2x}{\sqrt{x}-3}=lim\dfrac{\dfrac{3}{x}-2}{\dfrac{1}{\sqrt{x}}-\dfrac{3}{x}}=-\infty\)
Vì: \(lim\left(\dfrac{3}{x}-2\right)=-2< 0\)
\(lim\left(\dfrac{1}{\sqrt{x}}-\dfrac{3}{x}\right)=0\) và \(\dfrac{1}{\sqrt{x}}-\dfrac{3}{x}>0\) khi x vô cùng lớn.
Đặt \(x+\dfrac{1}{x}=t\Rightarrow t^2=x^2+\dfrac{1}{x^2}+2\)
Pt trở thành:
\(7t+2\left(t^2-2\right)=5\Leftrightarrow2t^2+7t-9=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=1\\x+\dfrac{1}{x}=-\dfrac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vô-nghiệm\right)\\x^2+\dfrac{9}{2}x+1=0\end{matrix}\right.\)
Theo hệ thức Viet: \(x_1x_2=\dfrac{c}{a}=1\)
Chọn B
Đặt
Bài toán quy về tìm giá trị lớn nhất của hàm số y = f(t) trên đoạn [-2;0].
Từ bảng biến thiên ta có giá trị lớn nhất của hàm số y = f(t) trên đoạn [-2;0] là 3.
Vậy giá trị lớn nhất của hàm số f(sin x -1) bằng 3.
http://123doc.org/document/1883740-phuong-phap-dung-truc-toa-do-trong-bai-hinh-hoc-khong-gian-new.htm
cả nhà giúp mình với mai minh kiểm tra chất lượng rồi. Thanks all.
Khi góc α rất nhỏ (nhỏ hơn 10 độ) thì \(sin\left(x\right)\approx x\) nên \(sin\left(1^o\right)\approx\dfrac{\pi}{180}\approx0.01745\)