Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{2^{3^2}}=9^6\)
\(2^{3^{2^3}}=8^6\)
Vì \(9^6>8^6\)
\(\Rightarrow3^{2^{3^2}}>2^{3^{2^3}}\)
3^2^3^2<2^3^2^3
chắc zậy mà mink cũng ko chắc đâu nha!!!
Bài tập này bạn lên mạng tìm kiếm có thể có chứ giải thì dái lắm
Cố gắng nha
a, \(S=7+7^3+...+7^{1999}\)
=>\(7^2S=7^3+7^5+...+7^{2001}\)
=>\(49S-S=\left(7^3+7^5+...+7^{2001}\right)-\left(7+7^3+...+7^{1999}\right)\)
=>\(48S=7^{2001}-7\)
=>\(S=\frac{7^{2001}-7}{48}\)
b, đề thiếu
\(\Rightarrow2S=6+\frac{3}{1}+\frac{3}{2}+...+\frac{3}{2^8}\)
\(\Rightarrow2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+...+\frac{3}{2^9}\right)\)
\(\Rightarrow S=3-\frac{3}{2^9}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^9}\)
\(\Rightarrow\frac{1}{2}.S=\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^{10}}\)
\(\Rightarrow S-\frac{1}{2}.S=\frac{1}{2}.S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^9}-\left(\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^{10}}\right)\)
\(\Rightarrow\frac{1}{2}.S=3-\frac{3}{2^{10}}\)
\(\Rightarrow S=6-\frac{6}{2^{10}}\)
Co Gai De Thuong
A = 2 + 22 + 23 + ... + 299 + 2100
= ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
= 2 x ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 x ( 1 + 2 + 22 + 23 + 24 )
= 2 x 31 + ... + 296 x 31
= 31 ( 2 + ... + 296 )
Vậy A chia hết cho 31
A = 2 + 22 + 23 + 24 + 25 + .... + 296 + 297 + 298 + 299 + 2100
A = [2 + 22 + 23 + 24 + 25] + ... + 295[2 + 22 + 23 + 24 + 25]
A = 62 + ... + 295.62
A = 2.31 + .... + 295.2.31
A = 31.2.[20 + 25 + ... +295]
=> A \(⋮31\)
bấm và chữ M ngược là đc
\(S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+..\frac{3}{2^{10}}\)
\(\Leftrightarrow2S=6+3+\frac{3}{2}+\frac{3}{2^2}+..\frac{3}{2^9}\)
\(\Leftrightarrow2S-S=6+3+\frac{3}{2}+\frac{3}{2^2}+..\frac{3}{2^9}-3-\frac{3}{2}-\frac{3}{2^2}-\frac{3}{2^3}-...-\frac{3}{2^{10}}\)
\(\Leftrightarrow S=6-\frac{3}{2^{10}}\)
\(\Leftrightarrow S=\frac{6144}{1024}-\frac{3}{1024}\)
\(\Leftrightarrow S=\frac{6141}{1024}\)