Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=30+32+34+36+...+32020
32.S=32+34+36+...+32020+32021
9S-S=(32+34+36+...+32020+32021)-(30+32+34+36+...+32020)
8S=32021-30
\(S=\frac{3^{2021}-1}{8}\)
\(\left(6^{2007}-6^{2006}\right):6^{2006}\)
\(=6^{2007}:6^{2006}-6^{2006}:6^{2006}\)
\(=6^{2007-2006}-1\)
\(=6^1-1\)
\(=6-1\)
\(=5\)
\(\left(7^3+7^5\right).\left(5^4+5^6\right).\left(3^3.3-9^2\right)\)
\(=\left(7^3+7^5\right).\left(5^4+5^6\right).\left(3^{3+1}-9^2\right)\)
\(=\left(7^3+7^5\right).\left(5^4+5^6\right).\left(3^4.9^2\right)\)
\(=\left(7^3+7^5\right).\left(5^4+5^6\right).\left[3^4-\left(3^2\right)^2\right]\)
\(=\left(7^3+7^5\right).\left(5^4+5^6\right).\left(3^4-3^4\right)\)
\(=\left(7^3+7^5\right).\left(5^4+5^6\right).0\)
\(=0\)
Cho : S = 30 + 32 + 34 + 36 +.......+ 32002
a) Tính S
b) Chứng minh S\(⋮\) 7.
Giúp mk vs Nguyễn Anh Duy
a) \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)
\(\Rightarrow S=1+3^2+3^4+...+3^{2002}\)
\(\Rightarrow9S=3^2+3^4+3^6+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(1+3^2+3^4+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\)
\(\Rightarrow S=\frac{3^{2004}-1}{8}\)
b) \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)
\(\Rightarrow S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{2000}+3^{2001}+3^{2002}\right)\)
\(\Rightarrow S=\left(1+9+81\right)+3^6.\left(1+3^2+3^4\right)+...+3^{2000}.\left(1+3^2+3^4\right)\)
\(\Rightarrow S=91+3^6.91+...+3^{2000}.91\)
\(\Rightarrow S=\left(1+3^6+...+3^{2000}\right).91⋮7\)
\(\Rightarrow S⋮7\)
b) Câu này mình có cách khác:
Ta có S là số nguyên nên phải chứng minh \(3^{2004}-1\) chia hết cho 7
Ta có: \(3^{2004}-1=\left(3^6\right)^{334}-1=\left(3^6-1\right).M=728.M=7.104.M\)
\(\Rightarrow3^{2004}\) chia hết cho 7. Mặt khác \(\left(7;8\right)=1\) nên S chia hết cho 7
S = 1 + 32 + 34 + 36 + ... + 392 + 394 + 396 + 398
= (1 + 32) + (34 + 36) + ... + (392 + 394)+ (396 + 398)
= (1 + 32) + 34(1 + 32) + .... + 392(1 + 32) + 396(1 + 32)
= (1 + 9) + 34(1 + 9) + ..... + 392.( 1 + 9) + 396(1 + 9)
= 10 + 34.10 + ...... + 392.10 + 396.10
= 10(1 + 34 + ..... + 392 + 396) Chia hết cho 10
=> S Chia hết cho 10 (ĐPCM)
S=1+3^2+,,,,,,,+3^97+3^98
S=(1+3^2)+.............+(3^97+3^98)
S=(1+3^2)+............+3^97.(1+3^2)
S=(1+9)+........+3^97.(1+9)
S=10+......+3^97.10 \(⋮\)10
Vì (1+9=10\(⋮\)10)
=>S\(⋮10\)
\(30^{20}:\left(3^{15}\cdot2^3+3^{15}\cdot2020^0\right)=30^{20}:\left(3^{15}\cdot2^3+3^{15}\cdot1\right)\)
\(=30^{20}:\left[3^{15}\cdot\left(2^3+1\right)\right]\)
\(=30^{20}:\left(3^{15}\cdot3^2\right)\)
\(=\left(3\cdot10\right)^{20}:3^{17}\)
\(=3^{20}:3^{17}\cdot10^{20}\)
\(=3^3\cdot10^{20}\)
\(=27\cdot100000000000000000000\)
\(=2700000000000000000000\)
a: \(S=\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+3^2+3^4+...+3^8\right)⋮4\)
b: \(S=\left(1+2\right)+2^2\left(1+2\right)+...+2^8\left(1+2\right)\)
\(=3\left(1+2^2+...+2^8\right)⋮3\)
bạn nhóm 3 số vào 1 nhóm rồi nhóm ts chung riêng nhóm thứ nhất tính ra lun
Giải
Ta có: S=\(3^0+3^2+3^4+...+3^{2002}\)
\(\Leftrightarrow\)\(3^2\)S=\(3^2\)(\(3^0+3^2+3^4+...+3^{2002}\))
\(\Leftrightarrow\)\(3^2S=3^2+3^4+3^6+...+3^{2004}\)
\(\)\(3^2S-S=\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
8S=\(\left(3^2-3^2\right)+\left(3^4-3^4\right)+\left(3^6-3^6\right)+...+\left(3^{2002}-3^{2002}\right)+3^{2004}-1\)
8S=0+0+0+...+\(3^{2004}\)-1=\(3^{2004}-1\)
\(\Leftrightarrow\)S=\(\frac{3^{2004}-1}{8}\)
\(S=3^0+3^2+3^4+3^6+.....+3^{2020}\)
\(3^2S=3^2+3^4+3^6+.....+3^{2020}+3^{2020}\)
\(9S-S=8S=3^{2020}-1\)
\(S=\frac{3^{2020}-1}{8}\)