\(S_1=\frac{1}{1\cdot2\cdot3\cdot4\cdot5}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2019

Ta có

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)   và \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+2}\)  nên

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{n\left(n+1\right)}+...+\frac{1}{2008\cdot2009}=1-\frac{1}{2009}=\frac{2008}{2009}\)

\(2B=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}+...+\frac{2}{2008\cdot2009\cdot2010}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2009\cdot2010}=\frac{201944}{2009\cdot2010}\)

\(\Rightarrow B=\frac{1}{2}\cdot\frac{201944}{2009\cdot2010}=\frac{1009522}{2009\cdot2010}\)

Do đó \(\frac{B}{A}=\frac{1009522}{2009\cdot2010}:\frac{2008}{2009}=\frac{1009522\cdot2009}{2008\cdot2009\cdot2010}=\frac{5047611}{2018040}\)

4 tháng 9 2016

\(B=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)

\(B=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{9898}{99.100}\)

\(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{98.101}{99.100}\)

\(B=\frac{1.2.3...98}{2.3.4...99}.\frac{4.5.6...101}{3.4.5...100}\)

\(B=\frac{1}{99}.\frac{101}{3}=\frac{101}{297}\)

A=\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right).....\left(1+\frac{1}{2017.2019}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1.3+1}{1.3}\right).\left(\frac{2.4+1}{2.4}\right).\left(\frac{3.5+1}{3.5}\right)..........\left(\frac{2017.2019+1}{2017.2019}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.............\frac{4072324}{2017.2019}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...................\frac{2018^2}{2017.2019}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{\left(2.3.4..........2018\right).\left(2.3.4............2018\right)}{\left(1.2.3............2017\right).\left(3.4.5..........2019\right)}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2018.2}{1.2019}\right)=\frac{2018.2}{2.2019}=\frac{2018}{2019}\)

Vậy \(A=\frac{2018}{2019}\)

Chúc bn học tốt

\(A:\frac{1}{2}=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{2017.2019+1}{2017.2019}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}......\frac{2018^2}{2017.2019}\)

\(=\frac{2.2.3.3.4.4.....2018.2018}{1.3.2.4.3.5....2017.2019}\)

\(=\frac{2.3.4.....2018}{1.2.3.4.....2017}.\frac{2.3.4....2018}{3.4.5.....2019}\)

\(=2018.\frac{2}{2019}\)

\(=\frac{4036}{2019}\)

\(\Rightarrow A=\frac{4036}{2019}.\frac{1}{2}\)

\(A=\frac{2018}{2019}\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:

$x(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7})< 1\frac{6}{7}$

$x(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7})< \frac{13}{7}$

$x(1-\frac{1}{7})< \frac{13}{7}$

$x.\frac{6}{7}< \frac{13}{7}$

$x< \frac{13}{7}: \frac{6}{7}=\frac{13}{6}$

Vì $x$ là số nguyên nên $x\leq 2$

Vậy $x$ là các số nguyên sao cho $x\leq 2$.