Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{5.6}+\frac{1}{10.9}+\frac{1}{15.12}+...+\frac{1}{3350.2013}\)
\(B=\frac{1}{5.3}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{670.671}\right)\)
\(B=\frac{1}{15}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{670}-\frac{1}{671}\right)\)
\(B=\frac{1}{15}.\left(1-\frac{1}{671}\right)\)
\(B=\frac{1}{15}.\frac{670}{671}=\frac{134}{2013}\)
Nguyễn Huy Thắngsoyeon_Tiểubàng giảiSilver bulletLê Nguyên HạoPhương AnVõ Đông Anh Tuấnsoyeon_Tiểubàng giảiLê Thị Linh ChiNguyễn Huy Tú
Ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)
\(=\frac{\left(2x+3y-z\right)-5}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)
\(\Rightarrow\begin{cases}x-1=2.5=10\\y-2=3.5=15\\z-3=4.5=20\end{cases}\)\(\Rightarrow\begin{cases}x=11\\y=17\\z=23\end{cases}\)
Vậy x = 11; y = 17; z = 23
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{x_1-1}{10}=.....=\frac{x_{10}-10}{1}=\frac{\left(x_1+x_2+....+x_{10}\right)-\left(1+2+3+...+10\right)}{1+2+3+...+10}\)
\(=\frac{45}{55}=\frac{9}{11}\)
Giải ra ta được
\(x_1=\frac{101}{11}\)
\(x_2=\frac{103}{11}\)
........
\(x_{10}=\frac{119}{11}\)
\(\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{11}}{\frac{13}{4}-\frac{13}{5}+\frac{13}{7}+\frac{13}{11}}=\frac{3.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{11}\right)}{13.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{11}\right)}=\frac{3}{13}\)
Ủng hộ mk nha ^_-
\(\frac{2x-1}{3}=\frac{x+2}{5}-1\)
\(\Rightarrow\frac{2x-1}{3}=\frac{x-3}{5}\)
\(\Rightarrow\left(2x-1\right).5=3.\left(x-3\right)\)
\(\Rightarrow10x-5=3x-9\)
\(\Rightarrow10x-3x=-9+5\Rightarrow7x=-4\Rightarrow x=-\frac{4}{7}\)