Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=-\left(1+2+...+2^{2009}+2^{2010}\right)\)
\(-2S=2\left(1+2+...+2^{2009}+2^{2010}\right)\)
\(\Rightarrow-2S+S=-S=2+2^2+...+2^{2010}+2^{2011}-1-2-...-2^{2009}-2^{2010}\)
\(-S=2^{2011}-1\Rightarrow S=1-2^{2011}\)
S=22010 - 22009 - 22008 -...-2-1
=>2S=2 x 22010 - 2 x 22009 - 2 x 22008 -...-2 x 2 -2 x 1
2S=22011 - 22010 - 22009 - ... - 22 -2
=>S=1-22011
\(S=2^{2010}-2^{2009}-...-2-1\)
\(2S=2^{2011}-2^{2010}-2^{2009}-....-2^2-2\)
Trừ dưới cho trên:
\(S=2^{2011}-2.2^{2010}+1=2^{2011}-2^{2011}+1=1\)
\(\Rightarrow S=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(A=1+2+2^2+...+2^{2008}+2^{2009}\)
Nhân cả hai vế của A với 2 ta được :
\(2A=2\left(1+2+2^2+...+2^{2009}\right)\)
\(=2+2^2+2^3+...+2^{2010}\) (1)
Trừ cả hai vế của (1) cho A ta được :
\(2A-A=\left(2+2^2+2^3+...+2^{2010}\right)-\left(1+2+2^2+...+2^{2009}\right)\)
\(A=2^{2010}-1\)
\(\Rightarrow S=2^{2010}-\left(2^{2010}-1\right)=1\)
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
S=22010-22009-22008-...-2-1
=>2S=22011-22010-22009-...-22-2
=>2S-S=22011-22010-22009-...-22-2-22010+22009+22008+...+2+1
=>S=22011-22010-22010+1
=>S=22011-2*22010+1
=>S=22011-22011+1
=>S=1