Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Số các số hạng:
(2016-3):3+1=672 số
Tổng dãy số:
672x(2016+3):2=678384
????????????????????????????????????????????????????????????????????????????????????????????????????????????
\(S=2^{2019}-2^{2018}-2^{2017}-...-2^2-2-1\)
\(=2^{2019}-\left(1+2+2^2+...+2^{2017}+2^{2018}\right)\) (1)
Đặt \(Q=1+2+2^2+...+2^{2017}+2^{2018}\)
\(2Q=2+2^2+2^3+...+2^{2018}+2^{2019}\)
\(2Q-Q=2^{2019}-1\)
\(Q=2^{2019}-1\)(2)
Từ (1) và (2), ta được:
\(S=2^{2019}-\left(2^{2019}-1\right)=1\)
\(2^1+2^2+2^3+...+2^{2016}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2015}+2^{2016}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2015}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{2015}\right)⋮3\)
\(2^1+2^2+2^3+...+2^{2016}\)
\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)
\(S=2+2^2+...+2^{2016}\)
\(\Rightarrow2S=2.\left(2+2^2+...+2^{2016}\right)\)
\(\Rightarrow2S=2^2+2^3+...+2^{2017}\)
\(\Rightarrow2S-S=2^2+2^3+...+2^{2017}-\left(2+2^2+...+2^{2016}\right)\)
\(\Rightarrow S=2^2+2^3+...+2^{2017}-2-2^2-...-2^{2016}\)
\(\Rightarrow S=2^{2017-2}\)
2^1+2^2+2^3+2^4+2^2016
=2^1+2+3+4+2016
=2^2026