Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1.2+2.3+3.4+.......+99.100
Nhân cả 2 vế với 3, ta được:
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100= 99.100.101
=> A = (99.100.101)/3
A = 333300
S=1+(-2)+3+(-4)+...+(-98)+99
=(1+2+3+...+99)+[(-2)+(-4)+...+(-98)]
=2500 +2350
=4850
a)số các số hạng trong S là:
(98-2):2+1=49(số)
Tổng S là:
(2+98).45:2=2250
b) số các số hạng là:
(99-1):2+1=50(số)
tổng S là:
(99+1).50:2=2500
Ta có:
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(\Rightarrow9S=3^2-3^3+3^5-3^7+...+3^{100}-3^{101}\)
\(\Rightarrow9S-S=\left(3^2-3^3+3^5-3^7+...+3^{100}-3^{101}\right)+\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)\)
\(\Rightarrow8S=3^{101}-1\)
\(\Rightarrow S=\left(3^{101}-1\right):8\)
\(\Rightarrow S=\left(3^{101}-1\right):8⋮4\) ( \(8⋮4\) )
\(\Rightarrow3^{101}-1⋮4\)
\(\Rightarrow3^{101}\) chia 4 dư 1
S=1-3+32-...+398-399 (1)
=>3S=3-32+33+...+399-3100(2)
Từ 1 và 2 =>4S=1-3100
Do S chia hết cho -20 =>4S chia hết cho -20=>4S chia hết cho 4=>1-3100 chia hết cho 4
=>3100 chia 4 dư 1
\(\Rightarrow\)5S=1.2.3.4.5+2.3.4.5.5+...+98.99.100.101.5
\(\Rightarrow\)5S=1.2.3.4.5+2.3.4.5.(6-1)+...+98.99.100.101.(102-97)
\(\Rightarrow\)5S=1.2.3.4.5+2.3.4.5.6-1.2.3.4.5+...+98.99.100.101.102-97.98.99.100.101
\(\Rightarrow\)5S=98.99.100.101.102
\(\Rightarrow\)S=\(\frac{98.99.100.101.102}{5}\)
\(S=1.2+2.3+3.4+...+98.99\)
\(3S=1.2.3+2.3.3+3.4.3+...+98.99.3\)
\(3S=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+98.99\left(100-97\right)\)
\(3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99\)
\(3S=98.99.100\)
\(S=98.33.100\)
\(S=323400\)