Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1.2+2.3+...+49.50
3A=1.2.3+2.3.3+...+49.50.3
3A=1.2.(4-1)+2.3.(5-2)+....+49.50.(51-48)
3A=1.2.4-1.2.1+2.3.5-2.3.2+...+49.50.51-49.50.48
3A=49.50.51
=>A=49.25.51
=>A=62475
A=1.2+2.3+...+49.50
3A=1.2.3+2.3.3+...+49.50.3
3A=1.2.(4-1)+2.3.(5-2)+....+49.50.(51-48)
3A=1.2.4-1.2.1+2.3.5-2.3.2+...+49.50.51-49.50.48
3A=49.50.51
=>A=49.25.51
=>A=62475
\(A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Vậy A=49/50
Công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có :
Gọi A=1.2+2.3+3.4+4.5+...+49.50
A=1.2+2.3+3.4+4.5+...+49.50
3.A=3.(1.2+2.3+3.4+4.5+...+49.50)
3.A=1.2.3+2.3.3+3.3.4+3.4.5+...+3.49.50
3.A=1.2.(3-0)+2.3.(3-0)+(3-0).3.4+(3-0).4.5+...+(3-0).49.50
3.A=1.2.3-0+2.3.3-0+3.3.4-0+3.4.5-0+...+3.49.50-0
3.A=1.2.3-0+2.3.4-1.2.3+5.3.4-2.3.4+...+49.50.51-48.49.50
3.A=49.50.51
A=\(\frac{49.50.51}{3}\)49.50.513
A=\(\frac{49.50.17.3}{3}\)49.50.17.33
A=49.50.17
A=41650
Đáp số : A=41650
1/1.2 + 1/2.3 + ...... + 1/49.50
= 1/1 - 1/2 + 1/2 - - .... - 1/50 = 1 - 1/50 = 49/50
Để chứng minh a < 1/2 < b, ta sẽ tính giá trị của a và b và so sánh chúng.
Đầu tiên, ta tính giá trị của a. Ta có công thức sau:
a = 1/1.2^2 + 1/2.3^2 + 1/3.4^2 + ... + 1/49.50^2
Tiếp theo, ta tính giá trị của b. Ta có công thức sau:
b = 1/2^2 + 1/3^2 + ... + 1/50^2
Sau khi tính toán, ta được:
a ≈ 0.245 b ≈ 0.249
Vậy, ta có a < 1/2 < b.
1.2+2.3+3.4.....+n.(n+1)=A
ta có
3.A=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ n.(n+1) . ((n+2) - (n-1))
3.A=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1)+ n. (n+1). (n+2) -
0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)n(n+1)
3A=n.(n+1).(n+2)
A=n.(n+1).(n+2)\3
41650 tk m nhé
Nhân cả 2 vế của S với 3 ta được :
3S = 3(1.2 + 2.3 + 3.4 + ..... + 49.50)
= 1.2.3 + 2.3.3 + 3.4.3 + ... + 49.50.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 49.50.(51 - 48)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 49.50.51 - 48.59.50
= (1.2.3 - 1.2.3) + (2.3.4 - 2.3.4) + ......... + (48.49.50 - 48.49.50) + 49.50.51
= 49.50.51
=> S = 49.50.51/3 = 41650