Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=8/3.2/5.3/8.10.19/92
=(8/3.3/8).(2/5.10).19/92
=1.4.19/2
=4.19/92
=19/23
N=5/7.5/11+5/7.2/11-5/7.14/11
=5/7.(5/11+2/11-14/11)
=5/7. -7/11= -5/11
Q=(1/99+12/999 +123/9999).(1/2-1/3-1/6)
=(1/99+12/999+123/9999).(3/6+ -2/6+ -1/6)
=(1/99+12/999+123/9999). 0
=0
\(M=\dfrac{8}{3}\cdot\dfrac{2}{5}\cdot\dfrac{3}{8}\cdot10\cdot\dfrac{19}{92}\\ =\dfrac{8\cdot2\cdot3\cdot10\cdot19}{3\cdot5\cdot8\cdot92}\\ =\dfrac{8\cdot2\cdot3\cdot2\cdot5\cdot19}{3\cdot5\cdot8\cdot2\cdot2\cdot23}\\ =\dfrac{19}{23}\)
\(N=\dfrac{5}{7}\cdot\dfrac{5}{11}+\dfrac{5}{7}\cdot\dfrac{2}{11}-\dfrac{5}{7}\cdot\dfrac{14}{11}\\ =\dfrac{5}{7}\cdot\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\\ =\dfrac{5}{7}\cdot\left(-\dfrac{7}{11}\right)\\ =-\dfrac{5}{11}\)
\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{1}{6}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot0\\ =0\)
A = \(9999^{999^{99^9}}\)
Vì 999 không chia hết cho 2 nên \(999^{99^9}\) không chia hết cho 2
Vậy \(999^{99^9}\) = 2k + 1
A = 99992k+1
A = (99992)k.9999
A = \(\overline{...1}\)k. 9999
A = \(\overline{..1}\).9999
A = \(\overline{..9}\)
B = vì 8 ⋮ 2 nên \(8^{7^{6^{5^{3^2}}}}\) ⋮ 2
Vậy B = 92k = (92)k = \(\overline{..1}\)k = \(\overline{..1}\)
a,\(D=10+100+......+1000...000-1-1-.....-1\) có 50 chữ số 0 và 50 số 1
\(=111.....111-50\) có 51 chữ số 1 \(=111.....1061\) có 48 chữ số 1
b,tương tự a
c,\(1-2^2+3^2-4^2+.......+99^2-100^2\)
\(=\left(1-2\right).\left(1+2\right)+\left(3-4\right)\left(3+4\right)+......+\left(99-100\right)\left(99+100\right)\)
\(=-\left(3+7+.....+199\right)\)\(=-\frac{\left(199+3\right).50}{2}=-5050\)
d,\(G=1.1!+2.2!+.......+100.100!\)
\(=\left(2-1\right).1!+\left(3-1\right).2!+.....+\left(101-1\right).100!\)
\(=2!-1!+3!-2!+.......+101!-100!\)
\(=101!-1!\)
Tinh tonga) D= 9+99+999+9999+...+999....9 (50 chu so 9)b) E= 9+99+999+...+999...9 (200 chu so 9)c)C=1−22+32−42+...+992−1002d) G= 1.1!+ 2. 2!+3.3!+ ... +100.100!
\(Q=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{9999}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(Q=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{9999}\right)0=0\)
\(A=\frac{1}{1\cdot2}+\frac{2}{2\cdot4}+\frac{3}{4\cdot7}+\frac{4}{7\cdot11}+...+\frac{10}{46\cdot56}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{46}-\frac{1}{56}\)
\(A=1-\frac{1}{56}\)
\(A=\frac{55}{56}\)
\(B=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{23\cdot27}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\)
\(B=\frac{1}{3}-\frac{1}{27}\)
\(B=\frac{8}{27}\)
\(C=\frac{4}{3\cdot6}+\frac{4}{6\cdot9}+\frac{4}{9\cdot12}+...+\frac{4}{99\cdot102}\)
\(C=\frac{4}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{99\cdot102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\cdot\frac{33}{102}\)
\(C=\frac{22}{51}\)
Ta có (ghi đầu bài vào)
Q=(23/99-25/999-27/9999)*0
Q=0
VẬy.... chú may mắn