Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
F=(x-1)3-x2(x-3)
=x3-3x2+3x-1-x3-3x2
=(x3-x3)-(3x2-3x2)+3x-1
=3x-1
Bài 2:
a)(x+3)2=(x-2)(x+4)
<=>x2+6x+9=x2+2x-8
<=>4x=-17
<=>x=-17/4
b)(x+4)2=2x2+16
<=>x2+8x+16=2x2+16
<=>8x=x2
<=>8x-x2=0
<=>x(8-x)=0
<=>x=0 hoặc x=8
Bài 1:
F=(x-1)3-x2(x-3)=x3-3x2+3x-1-x3+3x2=3x-1
Bài 2:
a, <=>(x+3)2-(x-2)(x-4)=0
<=>x^2+6x+9-x^2-4x+2x+8=0
<=>4x+17=0
<=>x=-4,25
b,<=>(x+4)2-2x2-16=0
<=>x2+8x+16-2x2-16=0
<=>8x-x2=0
<=>x(8-x)=0
<=>\(\orbr{\begin{cases}x=0\\x=8\end{cases}}\)
Bài 3:(đợi một xíu)
Có:
\(a^3+b^3+c^3=3abc\\\Leftrightarrow a^3+b^3+c^3-3abc=0\\\Leftrightarrow (a+b)^3+c^3-3ab(a+b)-3abc=0\\\Leftrightarrow (a+b+c)^3-3(a+b)c(a+b+c)-3ab(a+b+c)=0\\\Leftrightarrow (a+b+c)[(a+b+c)^2-3(a+b)c-3ab]=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab)=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\\\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0(vì.a+b+c\ne0)\\\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\\\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)=0\\\Leftrightarrow (a-b)^2+(b-c)^2+(a-c)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(a-c\right)^2\ge0\forall a,c\end{matrix}\right.\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)
Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
nên: \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow a=b=c\)
Thay \(a=b=c\) vào \(A\), ta được:
\(A=\dfrac{\left(2016+\dfrac{a}{a}\right)+\left(2016+\dfrac{b}{b}\right)+\left(2016+\dfrac{c}{c}\right)}{2017^3}\left(a,b,c\ne0\right)\)
\(=\dfrac{2016+1+2016+1+2016+1}{2017^3}\)
\(=\dfrac{2016\cdot3+1\cdot3}{2017^3}\)
\(=\dfrac{3\cdot\left(2016+1\right)}{2017^3}\)
\(=\dfrac{3}{2017^2}\)
Vậy: ...
a: ĐKXĐ: x<>1; x<>2; x<>-2; x<>-1
\(P=\dfrac{2017x+2017-2016x+2016-2014x-2016}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-2015x+2017}{x^2-4}\)
Bài trên mình đã giải rồi, hai nghiệm là x = 2016 và x = 2017
Đặt \(2016=a\) biểu thức trên trở thành:
\(P=\dfrac{\left(a^2\left(a+10\right)+31\left(a+1\right)-1\right)\left(a\left(a+5\right)+4\right)}{\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)}=\dfrac{A}{B}\)
Với \(B=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)\)
Ta có: \(a^2\left(a+10\right)+31\left(a+1\right)-1=a^3+10a^2+31a+30\)
\(=a^3+5a^2+6a+5a^2+25a+30=a\left(a^2+5a+6\right)+5\left(a^2+5a+6\right)\)
\(=\left(a+5\right)\left(a^2+5a+6\right)=\left(a+5\right)\left(a^2+2a+3a+6\right)\)
\(=\left(a+5\right)\left(a+2\right)\left(a+3\right)\)
Và \(a\left(a+5\right)+4=a^2+5a+4=a^2+a+4a+4=\left(a+1\right)\left(a+4\right)\)
\(\Rightarrow A=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)=B\)
\(\Rightarrow P=\dfrac{A}{B}=1\)