\(P=\dfrac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}}+\sqrt{45-4\sqrt{41}}}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

\(P=\dfrac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}}+\sqrt{45-4\sqrt{41}}}\)

\(P=\dfrac{8\sqrt{41}}{\sqrt{\left(\sqrt{41}+2\right)^2}+\sqrt{\left(\sqrt{41}-2\right)^2}}\)

\(P=\dfrac{8\sqrt{41}}{\sqrt{41}+2+\sqrt{41}-2}=\dfrac{8\sqrt{41}}{2\sqrt{41}}=4\)

*P/S: đã nhỡ làm câu a, câu b bạn Phùng Khánh Linh làm rồi :)

29 tháng 7 2018

\(P=\dfrac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}}+\sqrt{45-4\sqrt{41}}}=\dfrac{8\sqrt{41}}{\sqrt{41+2.2\sqrt{41}+4}+\sqrt{41-2.2\sqrt{41}+4}}=\dfrac{8\sqrt{41}}{2\sqrt{41}}=4\) \(Q=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\dfrac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{3+2\sqrt{3}+1}}+\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3-2\sqrt{3}+1}}=\dfrac{\left(2\sqrt{2}+\sqrt{6}\right)\left(3-\sqrt{3}\right)+\left(2\sqrt{2}-\sqrt{6}\right)\left(3+\sqrt{3}\right)}{9-3}=\dfrac{6\sqrt{2}-2\sqrt{6}+3\sqrt{6}-\sqrt{18}+6\sqrt{2}+2\sqrt{6}-3\sqrt{6}-\sqrt{18}}{6}=\dfrac{12\sqrt{6}-6\sqrt{2}}{6}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)

a: \(=\left(\sqrt{3}-\sqrt{2}+\sqrt{2}\right)\cdot\sqrt{3}=\sqrt{3}\cdot\sqrt{3}=3\)

b: \(=\dfrac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}+\sqrt{41}+2}}\)

\(=\dfrac{8\sqrt{41}}{\sqrt{47+5\sqrt{41}}}\)

20 tháng 7 2017

a) \(\sqrt{\dfrac{2-\sqrt{3}}{2}}+\dfrac{1-\sqrt{3}}{2}\)

= \(\sqrt{\dfrac{4-2\sqrt{3}}{4}}+\dfrac{1-\sqrt{3}}{2}\)

= \(\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}+\dfrac{1-\sqrt{3}}{2}\)

= \(\dfrac{\sqrt{3}-1+1-\sqrt{3}}{2}\)

= 0

b) \(\sqrt{41+6\sqrt{6}-12\sqrt{10}-4\sqrt{15}}+2\sqrt{5}-\sqrt{3}\)

= \(\sqrt{18+20+3+2\sqrt{54}-2\sqrt{360}-2\sqrt{60}}+2\sqrt{5}-\sqrt{3}\)

= \(\sqrt{\left(\sqrt{18}-\sqrt{20}+\sqrt{3}\right)^2}+2\sqrt{5}-\sqrt{3}\)

= \(\sqrt{18}-2\sqrt{5}+\sqrt{3}+2\sqrt{5}-\sqrt{3}\)

= \(\sqrt{18}\)

12 tháng 5 2018

\(\frac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}+\sqrt{45-\sqrt{41}}}}:\left(\sqrt{3}-\sqrt{2}\right)\) ( đề)

\(=\frac{8\sqrt{41}}{\sqrt{41}+2-\sqrt{41}-2}:\left(\sqrt{3}-\sqrt{2}\right)\)

\(=2\sqrt{41}:\left(\sqrt{3}-\sqrt{2}\right)\)

\(=2\sqrt{123}+2\sqrt{82}\)

vậy.....................

16 tháng 10 2018

2]\(\sqrt{3}\)+1+\(\sqrt{4-4\sqrt{3}+3}\)=\(\sqrt{3}+1+\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}+1+2-\sqrt{3}=3\)

4\(\left(\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)}\right)=\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{1}\)

19 tháng 10 2022

1: \(=2\sqrt{7}-12\sqrt{7}+15\sqrt{7}+27\sqrt{7}=32\sqrt{7}\)

3: \(=\sqrt{5}-2-\sqrt{14+6\sqrt{5}}\)

\(=\sqrt{5}-2-3-\sqrt{5}=-5\)

4: \(=2\sqrt{3}+3+4-2\sqrt{3}=7\)

5: \(=3-\sqrt{2}+3+\sqrt{2}+4-3=7\)

6: \(=\sqrt{\dfrac{6+2\sqrt{5}}{4}}+\sqrt{\dfrac{14-6\sqrt{5}}{4}}\)

\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}}{2}=\dfrac{4}{2}=2\)

8: \(=\sqrt{5}-1+\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{4}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{4}}\)

\(=\sqrt{5}-1+\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}\)

\(=\dfrac{2\sqrt{5}-2+3-\sqrt{5}-3-\sqrt{5}}{2}=\dfrac{-2}{2}=-1\)

Bài 2:

a: \(=\sqrt{5}-2\)

b: \(=2\sqrt{3}+4\sqrt{3}-5\sqrt{3}-9\sqrt{3}=-8\sqrt{3}\)

c: \(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2\sqrt{2}}=\sqrt{16-8}=2\sqrt{2}\)

d: \(=\sqrt{2}+1-2+\sqrt{2}=2\sqrt{2}-1\)

e: \(=\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}-\dfrac{6+2\sqrt{5}}{4}\)

\(=\dfrac{16-3-\sqrt{5}}{2}=\dfrac{13-\sqrt{5}}{2}\)

f: \(=\sqrt{5\sqrt{3+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)

\(=\sqrt{5\sqrt{3+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3+5\left(5-\sqrt{3}\right)}}\)

\(=\sqrt{5\sqrt{3+25-5\sqrt{3}}}\)

\(=\sqrt{5\sqrt{28-5\sqrt{3}}}\)

13 tháng 9 2017

\(M=\dfrac{8\sqrt{41}}{\sqrt{45+4\sqrt{41}}+\sqrt{45-4\sqrt{41}}}\)

\(M=\dfrac{8\sqrt{41}}{\sqrt{\left(\sqrt{41}+2\right)^2}+\sqrt{\left(\sqrt{41}-2\right)^2}}\)

\(M=\dfrac{8\sqrt{41}}{\sqrt{41}+2+\sqrt{41}-2}\)

\(M=\dfrac{8\sqrt{41}}{2\sqrt{41}}=\dfrac{8}{2}=4\)

Vậy M = 4

Học tốt nhé :)

21 tháng 6 2018

Bạn ơi,đâu có câu thức:a\(^2\)+b\(^2\) đâu?Chỉ có công thức a\(^{2^{ }}\)-b\(^2\) thôi mà?!:)))

9 tháng 7 2018

a) \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\)

b) \(\dfrac{1}{\sqrt{3}-1}-\dfrac{1}{\sqrt{3}+1}=\dfrac{\sqrt{3}+1-\left(\sqrt{3}-1\right)}{3-1}=1\)

c) \(2\sqrt{5}-3\sqrt{45}+\sqrt{500}=2\sqrt{5}-9\sqrt{5}+10\sqrt{5}=3\sqrt{5}\)

d) \(\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}=\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{4}\right)}{\sqrt{5}-2}=\dfrac{1}{\sqrt{3}+\sqrt{2}}-\sqrt{3}=\dfrac{1-\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\dfrac{1-3-\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{-2-\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=-\sqrt{2}\)

e) \(\dfrac{1}{2+\sqrt{3}}-\dfrac{1}{2-\sqrt{3}}+5\sqrt{3}=\dfrac{2-\sqrt{3}-\left(2+\sqrt{3}\right)}{4-3}+5\sqrt{3}=-2\sqrt{3}+5\sqrt{3}=3\sqrt{3}\)

f) \(\sqrt{3}-\sqrt{4+2\sqrt{3}}=\sqrt{3}-\left(\sqrt{3}+1\right)=-1\)

g) \(\dfrac{5-\sqrt{5}}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}=\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}=\sqrt{5}-\dfrac{4}{\sqrt{5}+1}=\dfrac{5+\sqrt{5}-4}{\sqrt{5}+1}=1\)

h)\(\sqrt{37-20\sqrt{3}+\sqrt{37+20\sqrt{3}}}=\sqrt{37-20\sqrt{3}+\left(5+2\sqrt{3}\right)}=\sqrt{42-18\sqrt{3}}=\sqrt{\left(3\sqrt{3}+3\right)^2+6}\)