\(\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{2015.2017}\)

giup voi mk d...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

\(P=\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{2015.2017}\)

\(P=3\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2015.2017}\right)\)

\(P=3.\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)

\(P=\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{2017}\right)\)

\(P=\dfrac{3}{2}.\dfrac{2014}{6051}\)

\(P=\dfrac{1007}{2017}\)

7 tháng 4 2017

1007/2017

11 tháng 5 2018

\(=3.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{47.49}\right)\)

\(=3.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)

\(=3.\left(\dfrac{1}{3}-\dfrac{1}{49}\right)\)

\(=3.\dfrac{46}{147}\)

\(=\dfrac{46}{49}\)

11 tháng 5 2018

\(\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{47.49}\)

=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)

=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{49}\right)\)

=\(\dfrac{3}{2}.\dfrac{46}{147}\)

=\(\dfrac{23}{49}\)

27 tháng 4 2017

\(M=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{3}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}=\frac{3}{4}\) \(\frac{3}{4}\)                                                                                                          \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=2-\frac{2}{101}=\frac{200}{101}\)

27 tháng 4 2017

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(B=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(B=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(B=2.\left(\frac{1}{1}-\frac{1}{101}\right)\)

\(B=2.\frac{100}{101}=\frac{200}{101}\)

20 tháng 4 2017

a, \(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{37.39}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\)

\(=\dfrac{1}{3}-\dfrac{1}{39}\)

\(=\dfrac{12}{39}\)

Vậy \(A=\dfrac{12}{39}\)

b,\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{73.76}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{73}-\dfrac{1}{76}\)

\(=1-\dfrac{1}{76}\)

\(=\dfrac{75}{76}\)

Vậy \(B=\dfrac{75}{76}\)

20 tháng 4 2017

a) Ta có :

\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+....................+\dfrac{2}{37.39}\)

\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...................+\dfrac{1}{37}-\dfrac{1}{39}\)

\(A=\dfrac{1}{3}-\dfrac{1}{39}=\dfrac{4}{13}\)

b) Ta có :

\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+..................+\dfrac{3}{73.76}\)

\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+..................+\dfrac{1}{73}-\dfrac{1}{76}\)

\(B=1-\dfrac{1}{76}=\dfrac{75}{76}\)

~ Học tốt ~

10 tháng 4 2017

Ta đặt

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{49.51}=A\)

\(\Rightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+..+\dfrac{2}{49.51}\)

\(2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

\(\Rightarrow2A=\dfrac{1}{1}-\dfrac{1}{51}=\dfrac{50}{51}\)

\(A=\dfrac{50}{51}:2=\dfrac{25}{51}\)

Vậy : \(\dfrac{1}{3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}=\dfrac{25}{51}\)

10 tháng 4 2017

Cảm ơn bạn nhiều nha!!!

Ta có :

M= \(\dfrac{3+3-3+\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{4+4-4+\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\)= \(\dfrac{3+3-3}{4+4-4}=\dfrac{3}{4}\)

b) Nhận xét thấy: \(\dfrac{2}{1.3}=1-\dfrac{1}{3};\dfrac{1}{3.5}=\dfrac{1}{3}-\dfrac{1}{5};...\)

Ta có:

B= 1-\(\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

B= 1- \(\dfrac{1}{101}\)= \(\dfrac{100}{101}\)

Vậy B= \(\dfrac{100}{101}\)

31 tháng 3 2017

Trả lời

a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...\dfrac{2}{99.101}\)

=\(2.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\right)\)

=\(2.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

= \(2.\left(\dfrac{1}{1}-\dfrac{1}{101}\right)\)

=\(2.\dfrac{100}{101}\)

=\(\dfrac{200}{101}\)

31 tháng 3 2017

Hình như phần b bạn chép đề sai hay sao đấy

16 tháng 5 2017

\(S=\dfrac{7}{3.5}+\dfrac{7}{5.7}+\dfrac{7}{7.9}+...+\dfrac{7}{2015.2017}\)

\(\dfrac{2}{7}S=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2015.2017}\)

\(\dfrac{2}{7}S=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\)

\(\dfrac{2}{7}S=\dfrac{1}{3}-\dfrac{1}{2017}\)

\(\dfrac{2}{7}S=\dfrac{2014}{6051}\)

\(S=\dfrac{4028}{42357}\)

16 tháng 5 2017

\(S=\dfrac{7}{3.5}+\dfrac{7}{5.7}+\dfrac{7}{7.9}+...+\dfrac{7}{2015.2107}\)

\(S=\dfrac{7}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2015.2017}\right)\)

\(S=\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)

\(S=\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{2017}\right)\)

\(S=\dfrac{7}{2}.\dfrac{2014}{6051}\)

\(S=\dfrac{4028}{42357}\)

3 tháng 3 2017

2/ = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +......+\(\dfrac{1}{100.101}\)

= 1-\(\dfrac{1}{2}\) +\(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)+.........+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)

=1-\(\dfrac{1}{101}\)=...........

mk làm vậy thôi nha

thông cảm

leuleuyeu

2 tháng 3 2017

=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{4.5}\)=\(1-\dfrac{1}{2}+....+\dfrac{1}{4}-\dfrac{1}{5}\)

=1-\(\dfrac{1}{5}=\dfrac{4}{5}\)

tương tự

25 tháng 4 2018

A = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

A=\(\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}\)

25 tháng 4 2018

B = \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{49.51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{51}=\dfrac{51}{102}-\dfrac{2}{102}=\dfrac{49}{102}\)