Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(4a^2cos^260^o+2ab.cos^2180^o+\dfrac{4}{3}cos^230^o\)
\(=4a^2.\left(\dfrac{1}{2}\right)^2+2ab.\left(-1\right)^2+\dfrac{4}{3}.\left(\dfrac{\sqrt{3}}{2}\right)^2\)
\(=4a^2.\dfrac{1}{4}+2ab+\dfrac{4}{3}.\dfrac{3}{4}\)
\(=a^2+2ab+1\).
b)
\(\left(asin90^o+btan45^o\right)\left(acos0^o+bcos180^o\right)\)
\(=\left(a+b\right)\left(a-b\right)=a^2-b^2\).
\(A=sin^21^o+c\text{os}^22^o+sin^23^o+c\text{os}^24^o+...+sin^2179^o+c\text{os}^2180^o\)
\(=sin^21^o+c\text{os}^22^o+sin^23^o+c\text{os}^24^o+...+c\text{os}^290^o-sin^289^o-c\text{os}^288^o-...-sin^21^o-c\text{os}^20^o\)
\(=c\text{os}^290^o-c\text{os}^20^o\)
\(=-1\)
Chúc bn học tốt
\(P=cos20+cos160+cos40+cos140+...+cos80+cos100+cos180\)
\(=2cos90.cos70+2cos90.cos50+...+2cos90.cos10+cos180\)
\(=cos90\left(2cos70+2cos50+...+2cos10\right)+cos180\)
\(=cos180=-1\) (do \(cos90=0\))
=cos0+cos180+cos20+cos160+cos40+cos140+cos60+cos120+cos80+cos100
=0+0+...+0
=0
\(A=cos10+cos170+cos40+cos140+cos70+cos110\)
\(A=cos10+cos\left(180-10\right)+cos40+cos\left(180-40\right)+cos70+cos\left(180-70\right)\)
\(A=cos10-cos10+cos40-cos40+cos70-cos70\)
\(A=0\)
\(B=sin5+sin355+sin10+sin350+...+sin175+sin185+sin360\)
\(B=sin5+sin\left(360-5\right)+sin10+sin\left(360-10\right)+...+sin175+sin\left(360-175\right)+sin360\)
\(B=sin5-sin5+sin10-sin10+...+sin175-sin175+sin360\)
\(B=sin360=0\)
\(C=cos^22+cos^288+cos^24+cos^284+...+cos^244+cos^246\)
\(C=cos^22+cos^2\left(90-2\right)+cos^24+cos^2\left(90-4\right)+...+cos^244+cos^2\left(90-44\right)\)
\(C=cos^22+sin^22+cos^24+sin^24+...+cos^244+sin^244\)
\(C=1+1+...+1\) (có \(\frac{44-2}{2}+1=22\) số 1)
\(\Rightarrow C=22\)
\(A=cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\left(-cos\left(\pi-\dfrac{5\pi}{7}\right)\right)=-cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)
\(\Rightarrow A.sin\left(\dfrac{\pi}{7}\right)=-sin\left(\dfrac{\pi}{7}\right).cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)
\(=-\dfrac{1}{2}sin\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)=-\dfrac{1}{4}sin\left(\dfrac{4\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)
\(=-\dfrac{1}{8}sin\left(\dfrac{8\pi}{7}\right)=\dfrac{1}{8}sin\left(\dfrac{\pi}{7}\right)\)
\(\Rightarrow A=\dfrac{1}{8}\)
\(B=\dfrac{\sqrt{3}}{2}.cos48^0.cos24^0.cos12^0\)
\(\Rightarrow B.sin12^0=\dfrac{\sqrt{3}}{2}sin12^0.cos12^0cos24^0.cos48^0\)
\(=\dfrac{\sqrt{3}}{4}sin24^0cos24^0cos48^0=\dfrac{\sqrt{3}}{8}sin48^0.cos48^0\)
\(=\dfrac{\sqrt{3}}{16}sin96^0=\dfrac{\sqrt{3}}{16}cos6^0\)
\(\Rightarrow2B.sin6^0.cos6^0=\dfrac{\sqrt{3}}{16}cos6^0\Rightarrow B=\dfrac{\sqrt{3}}{32.sin6^0}\)
Biểu thức này ko thể rút gọn tiếp được
a) \(\left(sinx+cosx\right)^2=sin^2x+2sinxcosx+cos^2x\)\(=1+2sinxcosx\).
b) \(\left(sinx-cosx\right)^2=sin^2x-2sinxcosx+cos^2x\)\(=1-2sinxcosx\).
c) \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\)
\(=1-2sin^2xcos^2x\).