Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+2x}-1}{2x}=\lim\limits_{x\rightarrow0}\frac{2x}{2x\left(\sqrt{1+2x}+1\right)}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{1+2x}+1}=\frac{1}{2}\)
b) \(\lim\limits_{x\rightarrow0}\frac{4x}{\sqrt{9+x}-3}=\lim\limits_{x\rightarrow0}\frac{4x\left(\sqrt{9+x}+3\right)}{x}=\lim\limits_{x\rightarrow0}[4\left(\sqrt{9+x}+3\right)=24\)
c) \(\lim\limits_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}=\lim\limits_{x\rightarrow2}\frac{x-2}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=\lim\limits_{x\rightarrow2}\frac{1}{\sqrt{x+7}+3}=\frac{1}{6}\)
d) \(\lim\limits_{x\rightarrow1}\frac{3x-2-\sqrt{4x^2-x-2}}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\frac{\left(3x-2\right)^2-\left(4x^2-4x-2\right)}{(x^2-3x+2)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(5x-6\right)}{\left(x-1\right)\left(x-2\right)\left(3x-2+\sqrt{4x^2-x-2}\right)}=\frac{1}{2}\\ \\\\ \\ \\ \\ \)
e)\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}=\lim\limits_{x\rightarrow1}\frac{2x+7-\left(x^2-8x+16\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x-9\right)}{\left(x-1\right)\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=\lim\limits_{x\rightarrow1}\frac{x-9}{\left(x^2-3x-3\right)\left(\sqrt{2x+7}-x+4\right)}=-8\)
f) \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}-3}{2-\sqrt{x+3}}=\lim\limits_{x\rightarrow1}\frac{(2x-2)\left(2+\sqrt{x+3}\right)}{\left(1-x\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\frac{-2\left(2+\sqrt{x+3}\right)}{\sqrt{2x+7}+3}=\frac{-4}{3}\)
g) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}=\lim\limits_{x\rightarrow0}\frac{x^2\left(\sqrt{x^2+16}+4\right)}{x^2\left(\sqrt{x^2+1}+1\right)}=4\)
h)
\(\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-3}{x-4}+\lim\limits_{x\rightarrow4}\frac{3-\sqrt{2x+1}}{x-4}=\lim\limits_{x\rightarrow4}\frac{1}{\sqrt{x+5}+4}+\lim\limits_{x\rightarrow4}\frac{8-2x}{\left(x-4\right)\left(3+\sqrt{2x+1}\right)}=\frac{1}{7}-\frac{1}{3}=\frac{-4}{21}\)
k) \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}+\sqrt{x+4}-3}{x}=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}-1}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{x}=\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+1}+1}+\lim\limits_{x\rightarrow0}\frac{1}{\sqrt{x+4}+2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^3-3x+2}{x^4-4x+3}=\lim\limits_{x\rightarrow1}\dfrac{\left(x+2\right)\left(x-1\right)^2}{\left(x^2+2x+3\right)\left(x-1\right)^2}=\lim\limits_{x\rightarrow1}\dfrac{x+2}{x^2+2x+3}=\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow2^-}\dfrac{x^3+x^2-4x-4}{x^2-4x+4}=\lim\limits_{x\rightarrow2^-}\dfrac{\left(x-2\right)\left(x^2+3x+2\right)}{\left(x-2\right)^2}=\lim\limits_{x\rightarrow2^-}\dfrac{x^2+3x+2}{x-2}=-\infty\)
\(\lim\limits_{x\rightarrow2}\dfrac{\left(x^2-x-2\right)^{20}}{\left(x^3-12x+16\right)^{10}}=\lim\limits_{x\rightarrow2}\dfrac{\left(x+1\right)^{20}\left(x-2\right)^{20}}{\left(x+4\right)^{10}\left(x-2\right)^{20}}=\lim\limits_{x\rightarrow2}\dfrac{\left(x+1\right)^{20}}{\left(x+4\right)^{10}}=\dfrac{3^{10}}{2^{10}}\)
\(\lim\limits_{x\rightarrow0^-}\dfrac{4x^2+5x}{x^2}=\lim\limits_{x\rightarrow0^-}\dfrac{4x+5}{x}=-\infty\)
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{x+2}-1}{\sqrt{x+5}-2}=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(\sqrt{x+5}+2\right)}{\left(x+1\right)\left(\sqrt{x+2}+1\right)}=\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{x+5}+2}{\sqrt{x+2}+1}=2\)
\(\lim\limits_{x\rightarrow4}\frac{2x-\sqrt{3x+1}}{x^2-1}=\frac{8-\sqrt{11}}{15}\)
Nhưng mình đoán bạn ghi nhầm đề, x tiến tới 1 mới có lý
\(\lim\limits_{x\rightarrow1}\frac{2x-\sqrt{3x+1}}{x^2-1}=\lim\limits_{x\rightarrow1}\frac{4x^2-3x-1}{\left(x-1\right)\left(x+1\right)\left(2x+\sqrt{3x+1}\right)}\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(4x+1\right)}{\left(x-1\right)\left(x+1\right)\left(2x+\sqrt{3x+1}\right)}=\lim\limits_{x\rightarrow1}\frac{4x+1}{\left(x+1\right)\left(2x+\sqrt{3x+1}\right)}=\frac{5}{2\left(2+2\right)}=\frac{5}{8}\)
\(\lim\limits_{x\rightarrow8}\frac{\sqrt[3]{x}-2+2-\sqrt{x-4}}{x-8}=\lim\limits_{x\rightarrow8}\frac{\frac{x-8}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}-\frac{x-8}{2+\sqrt{x-4}}}{x-8}\)
\(=\lim\limits_{x\rightarrow8}\left(\frac{1}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}-\frac{1}{2+\sqrt{x-4}}\right)=\frac{1}{12}-\frac{1}{4}=-\frac{1}{6}\)
Vậy nó ko phải dạng vô định, cứ thay số trực tiếp
\(=\frac{2}{0}=+\infty\)
Nếu là mũ 3 thì nó là dạng 0/0 rút gọn được. Nên chắc là đề ghi nhầm đấy
Bài 2:
\(\lim\limits_{x\to 2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}=\lim\limits_{x\to 2}\frac{x^2-x-2}{(x+\sqrt{x+2}).\frac{4x+1-9}{\sqrt{4x+1}+3}}=\lim\limits_{x\to 2}\frac{(x-2)(x+1)(\sqrt{4x+1}+3)}{(x+\sqrt{x+2}).4(x-2)}=\lim\limits_{x\to 2}\frac{(x+1)(\sqrt{4x+1}+3)}{4(x+\sqrt{x+2})}=\frac{9}{8}\)
Bài 3:
\(\lim\limits_{x\to 0-}\frac{1-\sqrt[3]{x-1}}{x}=-\infty \)
\(\lim\limits_{x\to 0+}\frac{1-\sqrt[3]{x-1}}{x}=+\infty \)
Bài 4:
\(\lim\limits_{x\to -\infty}\frac{x^2-5x+1}{x^2-2}=\lim\limits_{x\to -\infty}\frac{1-\frac{5}{x}+\frac{1}{x^2}}{1-\frac{2}{x^2}}=1\)
Bài 5:
\(\lim\limits_{x\to +\infty}\frac{2x^2-4}{x^3+3x^2-9}=\lim\limits_{x\to +\infty}\frac{\frac{2}{x}-\frac{4}{x^3}}{1+\frac{3}{x}-\frac{9}{x^3}}=0\)
Bài 6:
\(\lim\limits_{x\to 2- }\frac{2x-1}{x-2}=\lim\limits_{x\to 2-}\frac{2(x-2)+3}{x-2}=\lim\limits_{x\to 2-}\left(2+\frac{3}{x-2}\right)=-\infty \)
Bài 7:
\(\lim\limits _{x\to 3+ }\frac{8+x-x^2}{x-3}=\lim\limits _{x\to 3+}\frac{1}{x-3}.\lim\limits _{x\to 3+}(8+x-x^2)=2(+\infty)=+\infty \)
Bài 8:
\(\lim\limits _{x\to -\infty}(8+4x-x^3)=\lim\limits _{x\to -\infty}(-x^3)=+\infty \)
Bài 9:
\(\lim\limits _{x\to -1}\frac{\sqrt[3]{x}+1}{\sqrt{x^2+3}-2}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{x^2+3-4}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{(x-1)(x+1)}\)
\(\lim\limits _{x\to -1}\frac{\sqrt{x^2+3}+2}{(\sqrt[3]{x^2}-\sqrt[3]{x}+1)(x-1)}=\frac{-2}{3}\)
5.
\(\lim\limits_{x\rightarrow-\infty}\frac{-3x^5+7x^3-11}{x^5+x^4-3x}=\lim\limits_{x\rightarrow-\infty}\frac{-3+\frac{7}{x^2}-\frac{11}{x^5}}{1+\frac{1}{x}-\frac{3}{x^4}}=\frac{-3}{1}=-3\)
6.
\(\lim\limits_{x\rightarrow-4}\frac{\left(x+4\right)\left(x-1\right)}{x\left(x+4\right)}=\lim\limits_{x\rightarrow-4}\frac{x-1}{x}=\frac{-5}{-4}=\frac{5}{4}\)
7.
Khi \(x< 2\Rightarrow x-2< 0\) mà \(x+2\rightarrow4\Rightarrow\lim\limits_{x\rightarrow2^-}\frac{x+2}{x-2}=\frac{4}{-0}=-\infty\)
8.
\(\lim\limits_{x\rightarrow1}\frac{9-\left(2x+7\right)}{\left(x-1\right)\left(x+1\right)\left(3+\sqrt{2x+7}\right)}=\lim\limits_{x\rightarrow1}\frac{-2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(3+\sqrt{2x+7}\right)}\)
\(=\lim\limits_{x\rightarrow1}\frac{-2}{\left(x+1\right)\left(3+\sqrt{2x+7}\right)}=\frac{-2}{2.\left(3+3\right)}=-\frac{1}{6}\)
9.
\(\lim\limits_{x\rightarrow4}\frac{\left(4-x\right)\left(16-4x+x^2\right)}{4-x}=\lim\limits_{x\rightarrow4}\left(16-4x+x^2\right)=16\)
1.
\(\lim\limits_{x\rightarrow-\infty}\frac{x^2-7x+1-\left(x^2-3x+2\right)}{\sqrt{x^2-7x+1}+\sqrt{x^2-3x+2}}=\lim\limits_{x\rightarrow-\infty}\frac{-4x-1}{\sqrt{x^2-7x+1}+\sqrt{x^2-3x+2}}\)
\(=\lim\limits_{x\rightarrow-\infty}\frac{x\left(-4-\frac{1}{x}\right)}{-x\sqrt{1-\frac{7}{x}+\frac{1}{x^2}}-x\sqrt{1-\frac{3}{x}+\frac{2}{x^2}}}=\frac{-4}{-1-1}=2\)
2.
\(\lim\limits_{x\rightarrow0^+}\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\lim\limits_{x\rightarrow0^+}\frac{\sqrt{x}+1}{\sqrt{x}-1}=-1\)
3.
\(\lim\limits_{x\rightarrow-1}\frac{x^2-3}{x^3+2}=\frac{1-3}{-1+2}=-2\) (ko phải dạng vô định, cứ thay số tính)
4.
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{2x^2-x-1}{x-1}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(2x+1\right)}{x-1}=\lim\limits_{x\rightarrow1}\left(2x+1\right)=3\)
Để hs có giới hạn tại \(x=1\Rightarrow m=3\)
Đề đúng đó chứ bạn?
\(\lim\limits_{x\rightarrow4}\frac{3+\sqrt{7}}{x^2-16}=\frac{3+\sqrt{7}}{0}=+\infty\)
Đây ko phải dạng vô định nên cứ thay số thôi
Mong mọi người giúp mik ạ đang rất cần