\(n^2+\left(n+2\right)^2+\left(n+4\right)^2+\left(n+6\right)^2...+\left(n+98\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

2/ Ta có : 4x - 3 \(⋮\) x - 2

<=> 4x - 8 + 5  \(⋮\) x - 2

<=> 4(x - 2) + 5  \(⋮\) x - 2

<=> 5 \(⋮\)x - 2 

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

Ta có bảng : 

x - 2-5-115
x-3137

a) Vì 3\(⋮\)n

=> n\(\in\)Ư(3)={ 1; 3 }

Vậy, n=1 hoặc n=3

17 tháng 10 2018

A:    n=3;1                  E:     n=2

B:     n=6;2                  F:    n=2

c:     n=1                     G:     n=2

D:    n=2                      H:     n=5

17 tháng 2 2017

\(A=\left(n-1\right)\left(n+1\right)\left(n^2\right)\left(n^2+1\right)\)

\(A=\left(n-1\right)n\left(n+1\right).n\left(n^2+1\right)\left(I\right)\)

\(A=\left[\left(n-1\right)\left(n+1\right).n^2\right]\left(n^2-4+5\right)\)

\(=\left(n-1\right)\left(n+1\right).n^2\left(n^2-2^2\right)+5\left(n-1\right)\left(n+1\right).n^2\)

\(=\left(n-1\right)\left(n+1\right).n^2\left(n-2\right)\left(n+2\right)+5\left(n-1\right)\left(n+1\right).n^2\)

\(=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right).n^2+5\left(n-1\right)\left(n+1\right).n^2\left(II\right)\)

1)với (I) A là tích của 3 số tự nhiên liên tiếp => chia hết cho 2 &3

2) với bửu thức (II) A là tổng hai số hạng

số hạng đầu là tích của 5 số tự nhiên liên tiếp=> chia hết cho 5

số hạng sau hiển nhiên chia hết cho 5 do có thừa số 5

KL

Với (I) A chia hết cho 2&3

Với (II) A chia hết cho 5

(I)&(II)=> điều bạn muốn tìm

13 tháng 6 2020

A = 1.2.3 + 2.3.4 + 3.4.5 ... + n(n + 1)(n + 2)

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + n(n + 1)(n + 2).4

4A = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2)+ ... + n(n + 1)(n + 2)[(n + 3) - (n - 1)]

4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + n(n + 1)(n + 2)(n + 3) - (n-1)n(n+1)(n+2)

4A = n(n+1)(n+2)(n+3)

A = n(n + 1)(n+2)(n + 3) : 4

2 tháng 9 2018

a) (2n-1)4 : (2n-1) = 27

(2n-1)3 = 27  =33

=> 2n - 1= 3

=> 2n = 4

n = 2

phần b,c làm tương tự nha bn

2 tháng 9 2018

d) (21+n) : 9 = 95:94

(2n+1) : 9 = 9

2n + 1 = 81

2n = 80

n = 40

2:

\(B=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9+3^n-2^n\cdot4-2^n\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)