Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\dfrac{3}{4}.\dfrac{8}{9}...\dfrac{9999}{10000}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}...\dfrac{99.101}{100.100}\)
\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}\)
\(=\dfrac{1}{100}.\dfrac{101}{2}\)
\(=\dfrac{101}{200}\)
\(\left(1-\dfrac{28}{10}\right)\left(1-\dfrac{52}{22}\right)\left(1-\dfrac{80}{36}\right)...\left(1-\dfrac{21808}{10900}\right)\)
\(=\left(1-\dfrac{2.10+8}{10}\right)\left(1-\dfrac{2.22+8}{22}\right)\left(1-\dfrac{2.36+8}{36}\right)...\left(1-\dfrac{2.10900+8}{10900}\right)\)
\(=\left(1-2-\dfrac{8}{10}\right)\left(1-2-\dfrac{8}{22}\right)\left(1-2-\dfrac{8}{36}\right)...\left(1-2-\dfrac{8}{10900}\right)\)
\(=\left(-1-\dfrac{8}{1.10}\right)\left(-1-\dfrac{8}{2.11}\right)\left(-1-\dfrac{8}{3.12}\right)...\left(-1-\dfrac{8}{100.109}\right)\)
\(=\left(\dfrac{-18}{1.10}\right)\left(\dfrac{-30}{2.11}\right)\left(\dfrac{-44}{3.12}\right)...\left(\dfrac{-10908}{100.109}\right)\)
\(=\left(\dfrac{-2.9}{1.10}\right)\left(\dfrac{-3.10}{2.11}\right)\left(\dfrac{-4.11}{3.12}\right)...\left(\dfrac{-101.108}{100.109}\right)\)
\(=\dfrac{\left(-2\right)\left(-3\right)\left(-4\right)...\left(-101\right)}{1.2.3...100}.\dfrac{9.10.11...108}{10.11.12...109}\) (1)
\(=\dfrac{101}{1}.\dfrac{9}{109}=\dfrac{909}{109}\)
Do ở (1) có \(-2-\left(-101\right)+1=100\) nhân tử (số nhân tử là số chẵn) mang dấu âm nên kết quả sẽ mang dấu dương
Ta có: \(A=\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)
\(=\dfrac{-2}{3}.\dfrac{-5}{6}.\dfrac{-9}{10}.\dfrac{-14}{15}.\dfrac{-20}{21}.\dfrac{-27}{28}.\dfrac{-35}{36}\)
\(=\dfrac{-2.\left(-5\right).3.\left(-3\right).2.\left(-7\right).\left(-4\right).5.\left(-3\right).9.5.\left(-7\right)}{3.2.3.2.5.3.5.3.7.4.7.4.9}\)
\(=\dfrac{-5}{3.4}=\dfrac{-5}{12}\)
Vậy \(A=\dfrac{-5}{12}.\)
\(C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\)
\(2C=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)
\(2C=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{2015}}\)
\(2C-C=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)
\(C=2-\dfrac{1}{2^{2016}}\)
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)
a)
\(\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{x+3}=\dfrac{9}{38}\\\\ \dfrac{1}{x+3}=\dfrac{1}{4}-\dfrac{9}{38}\\ \dfrac{1}{x+3}=\dfrac{1}{76}\\ x+3=76\\ x=73.\)
b)
\(\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ \dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ 2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ 2.\left(\dfrac{1}{6}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ \dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}=\dfrac{1}{18}\\ x+1=18\\ x=17.\)
a) \(\left(\dfrac{2}{3}-\dfrac{1}{2}-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}-\dfrac{1}{7}\right)\)
\(=-\dfrac{1}{6}\cdot\dfrac{17}{28}\)
\(=-\dfrac{17}{168}\)
b) \(\left(\dfrac{15}{21}\div\dfrac{5}{7}\right)\div\left(\dfrac{6}{5}\div2\right)\)
\(=1\div\dfrac{3}{5}\)
\(=\dfrac{5}{3}\)
15: \(=\dfrac{7-13}{14}\cdot\dfrac{7}{5}-\dfrac{-2+3}{21}\cdot\dfrac{7}{5}\)
\(=\dfrac{7}{5}\left(-\dfrac{6}{14}-\dfrac{1}{21}\right)\)
\(=\dfrac{7}{5}\cdot\dfrac{-10}{21}=\dfrac{-2}{3}\)
16: \(=\dfrac{3}{5}:\dfrac{-2-5}{30}+\dfrac{3}{5}:\left(\dfrac{-1}{3}-\dfrac{16}{15}\right)\)
\(=\dfrac{3}{5}\cdot\dfrac{-30}{7}+\dfrac{3}{5}:\dfrac{-5-16}{15}\)
\(=\dfrac{3}{5}\cdot\dfrac{-30}{7}+\dfrac{3}{5}\cdot\dfrac{-5}{7}\)
\(=\dfrac{3}{5}\cdot\left(-5\right)=-3\)
\(\left(1-\dfrac{1}{21}\right)\left(1-\dfrac{1}{28}\right)...\left(1-\dfrac{1}{1326}\right)\)
\(=\left(1-\dfrac{2}{42}\right)\left(1-\dfrac{2}{56}\right)\left(1-\dfrac{2}{72}\right)...\left(1-\dfrac{2}{2652}\right)\)
\(=\dfrac{40}{42}.\dfrac{54}{56}.\dfrac{70}{72}...\dfrac{2650}{2652}\)
\(=\dfrac{5.8}{6.7}.\dfrac{6.9}{7.8}.\dfrac{7.10}{8.9}...\dfrac{50.53}{51.52}\)
\(=\dfrac{5.6.7...50}{6.7.8...51}.\dfrac{8.9.10...53}{7.8.9...52}\)
\(=\dfrac{5}{51}.\dfrac{53}{7}=\dfrac{265}{357}\)